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Introduction
Modeling mechanics and flow in fractured media

 The simulation of flow and mechanics in fractured porous media is of particular interest in many subsurface applications, 

like geothermal energy production, CO2 sequestration and underground gas storage

 Faults and fractures are responsible of a number of processes, such as micro-seismic events, fluid leakage or shale-gas 

production                    especially concerned with the safety of the subsurface activity

• Safety of underground storage of wastes and hydrocarbon

• Ground ruptures due to water withdrawal in arid regions

• Triggered or induced seismicity Fault activation in 
Celaya, Mexico
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Introduction
Modeling mechanics and flow in fractured media

 A fault is a deteriorated portion of rock characterized by:

• the core filled with fine-grained and impermeable material 

derived from the gradual fracturing of the grains (cataclasis)

• an inner damage zone with a high density of micro-fractures 

(rock joints) that can generate and propagate

• an outer damage zone with a deformation bands giving rise 

to subsidiary faults

 Permeability in a fault is strongly anisotropic kN increases towards the core, then abruptly goes to zero

kT abruptly increases in the core at the fault activation

 Though it is a 3D region, the plain size is much larger than the normal size, so that it is often approximated by a lower-

dimensional entity
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 A fault can be modelled as a discontinuity within a 3D 

porous body made of a pair of friction surfaces in contact 

each other

 The surfaces can’t penetrate, and continuity is preserved if 

𝜏𝜏 < 𝜏𝜏𝐿𝐿 = 𝑐𝑐 − 𝜎𝜎𝑛𝑛 tan𝜑𝜑 (Mohr-Coulomb criterion)

 Traction on the fault is the quantity controlling the activation

 The Mohr-Coulomb criterion defines 𝜏𝜏𝐿𝐿, but gives no indication as to the direction of the limiting shear vector 𝒕𝒕𝐿𝐿

 According to the Principle of Maximum Plastic Dissipation, 𝒕𝒕𝐿𝐿 is such that the friction work 𝒲𝒲𝑓𝑓 is maximum, i.e., it is parallel 

to the slip vector 𝒖𝒖𝑟𝑟:

𝒕𝒕𝐿𝐿 = 𝜏𝜏𝐿𝐿
𝒖𝒖𝑟𝑟
𝒖𝒖𝑟𝑟 2
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 Modeling the mechanics of fractures in porous media involves several numerical issues, which are still largely unresolved:

1. Continuous Finite Elements with a different rheology [Rutqvist et al. 2008]

• Pros Ease of implementation

• Cons Inability to describe slippage and opening

2. Interface frictional elements by penalties [Beer, 1985; Cescotto & Charlier, 1993; Juanes et al., 2002; Ferronato et 

al., 2008]

• Pros Definiteness preservation, controlled number of DoFs

• Cons Ill-conditioning, instability, non-linear convergence difficulties

3. Lagrange multipliers [Aagaard et al., 2013; Jha & Juanes, 2014; Franceschini et al., 2016; 2020]

• Pros Mathematically robust prescription of constraints

• Cons Increase of DoFs, saddle-point problem



Mathematical model
Governing PDEs and variational formulation

 Governing PDEs for the linear momentum balance subject to contact constraints:

−∇ � 𝝈𝝈 𝒖𝒖 = 𝒃𝒃 ∀ 𝒙𝒙, 𝑡𝑡 ∈ Ω × 0,𝑇𝑇

𝑡𝑡𝑁𝑁 = 𝒕𝒕 � 𝒏𝒏𝑓𝑓 ≤ 0,  𝑔𝑔𝑁𝑁 = 𝒖𝒖 � 𝒏𝒏𝑓𝑓 ≥ 0,  𝑡𝑡𝑁𝑁𝑔𝑔𝑁𝑁 = 0 ∀ 𝒙𝒙, 𝑡𝑡 ∈ Γ𝑓𝑓 × 0,𝑇𝑇

𝒕𝒕𝑇𝑇 2 ≤ 𝜏𝜏𝐿𝐿 = 𝑐𝑐 − 𝑡𝑡𝑁𝑁 tan𝜑𝜑 , ̇𝒈𝒈𝑇𝑇 � 𝒕𝒕𝑇𝑇 = 𝜏𝜏𝐿𝐿 ̇𝒈𝒈𝑇𝑇 2 ∀ 𝒙𝒙, 𝑡𝑡 ∈ Γ𝑓𝑓 × 0,𝑇𝑇

(equilibrium)

(impenetrability)

(friction)

 Let 𝓤𝓤 ⊂ 𝐻𝐻1 Ω 3 be the first-order Sobolev space of functions in Ω satisfying the essential boundary conditions, with 𝓤𝓤0

the related counterpart for homogeneous conditions, and let 𝓜𝓜 be the dual space of the trace space 𝓦𝓦 = 𝐻𝐻1/2 Γ𝑓𝑓
3; let 

us define the subspace 𝓜𝓜 𝑡𝑡𝑁𝑁 ⊂𝓜𝓜 such that [Wohlmuth, 2011]:

𝓜𝓜 𝑡𝑡𝑁𝑁 = 𝝁𝝁 ∈ 𝓜𝓜: 𝝁𝝁,𝒗𝒗 Γ𝑓𝑓 ≤ 𝜏𝜏𝐿𝐿 𝒗𝒗𝑇𝑇 2,𝒗𝒗 ∈ 𝓦𝓦 with 𝑣𝑣𝑁𝑁 ≤ 0

 Weak variational formulation:

∇𝑠𝑠𝜼𝜼,𝝈𝝈 Ω + 𝜼𝜼 , 𝒕𝒕 Γ𝑓𝑓 = 𝜼𝜼,𝒃𝒃 �Ω + 𝜼𝜼, �̅�𝒕 Γ𝜎𝜎  ∀ 𝜼𝜼 ∈ 𝓤𝓤0 ⊂ 𝐻𝐻1 Ω 3

𝑡𝑡𝑁𝑁 − 𝜇𝜇𝑁𝑁,𝑔𝑔𝑁𝑁 Γ𝑓𝑓 + 𝒕𝒕𝑇𝑇 − 𝝁𝝁𝑇𝑇 , ̇𝒈𝒈𝑇𝑇 Γ𝑓𝑓 ≥ 0 ∀ 𝝁𝝁 ∈ 𝓜𝓜 𝑡𝑡𝑁𝑁
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Mathematical model
Discretization and solution algorithm

 Each fracture is subdivided into three regions: (1) “stick”: the fracture is closed and all components of traction are unknown; 

(2) “slip”: the fracture can slide but doesn’t open, only the normal component of traction is unknown; (3) “open”: the contact 

surfaces are inner traction-free boundaries

 The problem is highly non-linear because also the “stick”, “slip” and “open” portions of each fracture are unknown

 We introduce a partitioning of the 3D domain and a conforming discretization of 

the contact surfaces

 A typical choice is based on low-order elements: (1) first-order continuous finite 

elements for displacement unknowns; (2) face-centered piecewise-constant 

finite elements for traction

 This choice is usually consistent with the Finite Volume numerical models used 

by energy companies
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Mathematical model
Discretization and solution algorithm

 An active-set strategy, identifying the stick, slip and open regions, is used to transform the variational inequality into a 

variational equality:

 By introducing the discrete approximations 𝒖𝒖ℎ = ∑𝑖𝑖 𝑢𝑢𝑖𝑖𝜼𝜼𝑖𝑖 and 𝒕𝒕ℎ = ∑𝑗𝑗 𝑡𝑡𝑗𝑗𝝁𝝁𝑗𝑗, we obtain a non-linear system of discrete 

equations that is solved by using a Newton method

𝝁𝝁,𝒈𝒈 Γ𝑓𝑓
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜇𝜇𝑁𝑁,𝑔𝑔𝑁𝑁 Γ𝑓𝑓

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜅𝜅 𝝁𝝁𝑇𝑇 , 𝒕𝒕𝑇𝑇 − 𝜏𝜏𝐿𝐿𝒈𝒈𝑇𝑇/ 𝒈𝒈𝑇𝑇 2 Γ𝑓𝑓
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜅𝜅 𝝁𝝁, 𝒕𝒕 Γ𝑓𝑓

𝑜𝑜𝑠𝑠𝑜𝑜𝑜𝑜 = 0 ∀𝝁𝝁 ∈ 𝓜𝓜 𝑡𝑡𝑁𝑁

 On summary, we have three nested cycles to solve the proposed 

Boundary Value Problem:

• Active-set iteration to identify the stick, slip, open regions

• Newton iteration to solve the non-linear problem

• Krylov iteration to solve the inner Jacobian system
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Mathematical model
Discretization and solution algorithm

10/55

 The low-order ℚ1 − ℙ0 pair of spaces is not uniformly inf-sup 

stable, as it can be easily verified by a simple patch test (the kernel 

of the resulting Schur complement is not empty)

 As a consequence, the solution may suffer from the appearance of 

spurious traction modes with the classical «checkerboard» 

structure

 The problem can be addressed by introducing a local stabilization 

by extending the idea of the Jump Stabilization introduced for 

Stokes problems [Elman et al., 2014]

 We add a stabilization term to the discretized equation of equilibrium on the fault surface that, from a physical viewpoint, 

introduces a fictious force to balance the spurious traction modes and prescribing an element-wise equilibrated condition:

𝝁𝝁𝑗𝑗 , 𝒖𝒖ℎ
Γ𝑓𝑓
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜇𝜇𝑁𝑁,𝑗𝑗 , 𝒖𝒖ℎ � 𝒏𝒏 

Γ𝑓𝑓
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜅𝜅 𝝁𝝁𝑇𝑇,𝑗𝑗 , 𝒕𝒕𝑇𝑇ℎ − 𝒕𝒕𝑇𝑇∗ Γ𝑓𝑓

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜅𝜅 𝝁𝝁𝑗𝑗 , 𝒕𝒕ℎ 
Γ𝑓𝑓
𝑜𝑜𝑠𝑠𝑜𝑜𝑜𝑜 − 𝒥𝒥 𝝁𝝁𝑗𝑗 , 𝒕𝒕ℎ = 0 ∀𝝁𝝁𝑗𝑗 ∈ 𝓜𝓜ℎ



Mathematical model
Discretization and solution algorithm

 After linearization, the Jacobian system has a generalized saddle-point structure:

𝐴𝐴 𝐵𝐵1
𝐵𝐵2 −𝐻𝐻

Δ𝒖𝒖
Δ𝒕𝒕 =

𝒓𝒓𝒖𝒖
𝒓𝒓𝒕𝒕

 𝐴𝐴 ∈ ℝ𝑛𝑛𝑢𝑢×𝑛𝑛𝑢𝑢 : tangent stiffness matrix (SPSD)
 𝐵𝐵1 ∈ ℝ𝑛𝑛𝑢𝑢×𝑛𝑛𝑠𝑠 : force coupling block
 𝐵𝐵2 ∈ ℝ𝑛𝑛𝑠𝑠×𝑛𝑛𝑢𝑢 : consistency coupling block
 𝐻𝐻 ∈ ℝ𝑛𝑛𝑠𝑠×𝑛𝑛𝑠𝑠  : stabilization matrix (SPSD)

 The stabilization terms reads (Franceschini et al., 2022a):

𝒥𝒥 𝝁𝝁𝑗𝑗 , 𝒕𝒕ℎ = �
𝑒𝑒

1
𝑒𝑒
�
𝑒𝑒

𝝁𝝁𝑗𝑗 𝑒𝑒
� 𝜰𝜰(𝑒𝑒) � 𝒕𝒕ℎ 𝑒𝑒

for the edge 𝑒𝑒 between two elements 𝜑𝜑𝐾𝐾 and 𝜑𝜑𝐿𝐿, with 𝜰𝜰(𝑒𝑒) a positive definite 

second-order tensor providing the appropriate scaling of the stabilization term as 

a function of the element size and material properties
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Mathematical model
Linear solver

 The standard and optimal way to address the preconditioning of a saddle-point matrix exploits its block LDU factorization 

and approximates the Schur complement [Murphy et al., 2000; Benzi et al., 2005]:

𝒜𝒜−1 = 𝐴𝐴 𝐵𝐵1
𝐵𝐵2 −𝐻𝐻

−1
= 𝐼𝐼𝑢𝑢 −𝐴𝐴−1𝐵𝐵1

0 𝐼𝐼𝑡𝑡
𝐴𝐴−1 0

0 𝑆𝑆−1
𝐼𝐼𝑢𝑢 0

−𝐵𝐵2𝐴𝐴−1 𝐼𝐼𝑡𝑡
,  𝑆𝑆 = 𝐻𝐻 + 𝐵𝐵2𝐴𝐴−1𝐵𝐵1 

 The key for the preconditioner is to replace 𝐴𝐴−1 and 𝑆𝑆−1 with effective sparse approximations, but this is not easy for the 

problem at hand [Franceschini et al., 2019]:

• a good sparse approximation of 𝑆𝑆, which is fully dense, often does not exist and, even if a sparse approximation of 𝑆𝑆

is used, an off-the-shelf algebraic approximation for its inverse might not be available

• in any case, this approach cannot be used if 𝐴𝐴 is singular
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 The idea is use as a preconditioner for 𝒜𝒜 the symmetrized and stabilized matrix �̂�𝒜 by a regular SPD matrix C:

�̂�𝒜 = 𝐴𝐴 𝐵𝐵
𝐵𝐵𝑇𝑇 −𝐶𝐶



Mathematical model
Linear solver

Theorem. Let 𝒜𝒜 and �̂�𝒜 the saddle-point matrices defined above, with 𝐴𝐴 non-singular. If 𝐶𝐶 = 𝐵𝐵𝑇𝑇𝐴𝐴−1𝐵𝐵, then the 
eigenvalues of the preconditioned matrix �̂�𝒜−1𝒜𝒜 are either 1, with multiplicity 𝑛𝑛𝑢𝑢, or 0.5, with multiplicity 𝑛𝑛𝑡𝑡

 An idea for selecting 𝐶𝐶 may rely on classical Augmented Lagrangian techniques, where 𝐶𝐶 = 𝛾𝛾𝐼𝐼𝑡𝑡 and 𝛾𝛾 = ⁄𝐵𝐵 2
2 𝐴𝐴 2

 A much-improved variant for 𝐶𝐶 exploits a local definition of 𝛾𝛾:

𝐶𝐶𝑖𝑖,𝑖𝑖 =
𝑟𝑟 𝒃𝒃𝑖𝑖 2

2

|𝐴𝐴 𝒃𝒃𝑠𝑠 2

 Optimal selection of fictitious SPD stabilization matrix C [Franceschini et al., 2022b]:

 The application of �̂�𝒜−1 is carried out by using its block UDL factorization, which gives rise to the so-called “primal” Schur 

complement 𝑆𝑆𝑢𝑢 ∈ ℝ𝑛𝑛𝑢𝑢×𝑛𝑛𝑢𝑢 [Benzi et al., 2005]:
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�̂�𝒜−1 = 𝐴𝐴 𝐵𝐵
𝐵𝐵𝑇𝑇 −𝐶𝐶

−1
=

𝐼𝐼𝑢𝑢 0
𝐶𝐶−1𝐵𝐵𝑇𝑇 𝐼𝐼𝑡𝑡

𝑆𝑆𝑢𝑢−1 0
0 −𝐶𝐶−1

𝐼𝐼𝑢𝑢 𝐵𝐵𝐶𝐶−1
0 𝐼𝐼𝑡𝑡

,  𝑆𝑆𝑢𝑢 = 𝐴𝐴 + 𝐵𝐵𝐶𝐶−1𝐵𝐵𝑇𝑇 



Mathematical model
Linear solver
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 The primal Schur complement 𝑆𝑆𝑢𝑢:

• is SPD even if 𝐴𝐴 is singular

• preserves a workable sparsity

• from a physical viewpoint, is a structural stiffness matrix with a modified stiffness around the fractures 

 The inverse of 𝑆𝑆𝑢𝑢 can be effectively applied in an approximate way by an off-the-shelf multigrid method

 The proposed algorithm uses a reverse approach with respect to classical constraint preconditioners, by exploiting the 

primal Schur complement of an augmented matrix (Reverse Augmented Constraint Preconditioner – RACP):

ℳ−1 =
𝐼𝐼𝑢𝑢 0

𝐶𝐶−1𝐵𝐵𝑇𝑇 𝐼𝐼𝑡𝑡
�̃�𝑆𝑢𝑢−1 0

0 −𝐶𝐶−1
𝐼𝐼𝑢𝑢 𝐵𝐵𝐶𝐶−1
0 𝐼𝐼𝑡𝑡

 The cost of the RACP application is practically equal to the application of �̃�𝑆𝑢𝑢−1 to a vector, e.g. the complexity of a multigrid 

operator



Theorem. Let 𝒜𝒜 and ℳ−1 the saddle-point matrix and RACP defined above, and:
𝛼𝛼𝑢𝑢 = 𝜆𝜆min �̃�𝑆𝑢𝑢−1 𝑆𝑆𝑢𝑢 + 𝐵𝐵𝐶𝐶−1𝐵𝐵𝑇𝑇 , 𝛽𝛽𝑢𝑢 = 𝜆𝜆max �̃�𝑆𝑢𝑢−1 𝑆𝑆𝑢𝑢 + 𝐵𝐵𝐶𝐶−1𝐵𝐵𝑇𝑇 ,

𝛼𝛼𝑡𝑡 = 𝜎𝜎min �̃�𝑆𝑢𝑢
−1/2𝐵𝐵𝐶𝐶−1/2 , 𝛽𝛽𝑡𝑡 = 𝜎𝜎max �̃�𝑆𝑢𝑢

−1/2𝐵𝐵𝐶𝐶−1/2 ,
where 𝜆𝜆 and 𝜎𝜎 denote the eigenvalues and the singular values, respectively. The, the real eigenvalues of ℳ−1𝒜𝒜 
are such that:

min 𝛼𝛼𝑢𝑢,
2𝛼𝛼𝑡𝑡2

𝛽𝛽𝑢𝑢 + 𝛽𝛽𝑢𝑢2 − 4𝛼𝛼𝑡𝑡2
≤ 𝜆𝜆 ≤ 𝛽𝛽𝑢𝑢,

and the real and imaginary parts of the complex eigenvalues are such that:

𝛼𝛼𝑢𝑢
2
≤ 𝑅𝑅𝑒𝑒 𝜆𝜆 ≤

𝛽𝛽𝑢𝑢
2

, 𝐼𝐼𝐼𝐼 𝜆𝜆 ≤ 𝛽𝛽𝑡𝑡2 −
𝛼𝛼𝑢𝑢2

4
,

with no complex eigenvalues if 2𝛽𝛽𝑡𝑡 < 𝛼𝛼𝑢𝑢.

Mathematical model
Linear solver
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Proof. See Franceschini et al., 2022b.



Mathematical model
Linear solver

 Eigenspectrum of ℳ−1𝒜𝒜 with �̃�𝑆𝑢𝑢−1 = 𝑆𝑆𝑢𝑢−1 (left) and �̃�𝑆𝑢𝑢−1 = AMG 𝑆𝑆𝑢𝑢  (right) as compared to the theoretical bounds:

effect of the choice for 𝐶𝐶 effect of the use of AMG
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Numerical results
Solver performance

 Effect of the augmentation on the conditioning of 𝐴𝐴 and 𝑆𝑆𝑢𝑢:
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𝑛𝑛𝑢𝑢 = 218,790
𝑛𝑛𝑡𝑡 = 6,336 

(2.9%)

𝑛𝑛𝑢𝑢 = 194,208
𝑛𝑛𝑡𝑡 = 6,936 

(3.6%)

𝑛𝑛𝑢𝑢 = 379,983
𝑛𝑛𝑡𝑡 = 167,799 

(44.2%)

A B C



Numerical results
Solver performance
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 Comparison of the RACP computational efficiency with the outcome obtained by the «standard» approach (Mixed 

Constraint Preconditioner – MCP) [Franceschini et al, 2019]

 To approximate the application of 𝐴𝐴−1 and 𝑆𝑆−1 either AMG or FSAI is used (MCP+AMG and MCP+FSAI)

 The preconditioner application cost 𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 denotes the number of matrix-vector products with the matrix 𝒜𝒜 required to 

compute ℳ-1 𝒓𝒓, while the total cost 𝐶𝐶𝑠𝑠 is computed as 𝐶𝐶𝑠𝑠=𝑛𝑛𝑖𝑖𝑡𝑡 (1+𝑐𝑐𝑎𝑎𝑝𝑝𝑝𝑝 ) 

Test 𝒏𝒏𝒊𝒊𝒕𝒕 𝒄𝒄𝒂𝒂𝒂𝒂𝒂𝒂 𝑪𝑪𝒔𝒔 𝒏𝒏𝒊𝒊𝒕𝒕 𝒄𝒄𝒂𝒂𝒂𝒂𝒂𝒂 𝑪𝑪𝒔𝒔 𝒏𝒏𝒊𝒊𝒕𝒕 𝒄𝒄𝒂𝒂𝒂𝒂𝒂𝒂 𝑪𝑪𝒔𝒔
A 17 5.36 108.12 X - - X - -
B 61 4.21 317.81 153 8.43 1442.79 > 1,000 1.85 X
C 89 4.52 491.28 > 1,000 9.51 X 270 3.18 1128.60

RACP MCP+AMG MCP+FSAI



Numerical results
Solver performance
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 Mesh independence analysis when progressively refining the discretization size



Numerical results
Solver performance

 An efficient parallel implementation of RACP is fundamental for solving large size problems that could arise in several 

applications

 Most of the operations that need to be parallelized in RACP can be borrowed from existing libraries, the only one that 

requires an ad hoc implementation is the computation of the diagonal entries of C

 The parallel implementation relies on the Chronos library 

[Isotton et al., 2021], whose use for research purposes 

is free of charge (www.m3eweb.it/chronos)

 Partition of A, B and BT is carried out with the aid of the 

ParMETIS library, so as to minimize communications

 Lagrange multipliers are assigned to each process so as 

to collect as many entries as possible for the 

computation of the C elements locally 
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Numerical results
Solver performance
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 Weak and strong scalability tests with RACP and Chronos AMG

𝑛𝑛𝑢𝑢 = 73,042,971
𝑛𝑛𝑡𝑡 = 10,553,856

(14.4%)
Weak scalability Strong scalability



Mathematical model
Governing PDEs, variational formulation and discretization

 The model is updated by introducing the fluid flow in the fractures:

̇𝑔𝑔𝑁𝑁 𝒖𝒖 + 𝛻𝛻 � 𝒒𝒒 𝒖𝒖, 𝑝𝑝 = 𝑞𝑞𝑠𝑠 ∀ 𝒙𝒙, 𝑡𝑡 ∈  Γ𝑓𝑓 × 0,𝑇𝑇

𝝈𝝈 𝒖𝒖 � 𝒏𝒏𝑓𝑓 = 𝑝𝑝𝒏𝒏𝑓𝑓 ∀ 𝒙𝒙, 𝑡𝑡 ∈  Γ𝑓𝑓 × 0,𝑇𝑇

−∇ � 𝝈𝝈 𝒖𝒖 = 𝒃𝒃 ∀ 𝒙𝒙, 𝑡𝑡 ∈ Ω × 0,𝑇𝑇 (linear momentum balance)

(mass balance on the fracture)

(traction balance on the fracture)

being the fractures subject to the same impenetrability and friction conditions set previously

 The fluid flow in the fractures is modelled by the classical Darcy relationship 𝒒𝒒 𝒖𝒖, 𝑝𝑝 = − 𝐶𝐶𝑓𝑓 𝒖𝒖 /𝜇𝜇 ∇𝑝𝑝, where the fracture 

conductivity is related to the displacement by a cubic law [Garipov et al., 2016]:

𝐶𝐶𝑓𝑓 𝒖𝒖 = 𝐶𝐶𝑓𝑓,0 +
𝒖𝒖 � 𝒏𝒏 3

12

 Mass balance equation is discretized by a Finite Volume scheme (TPFA) in order to locate pressure variables where 

tractions are defined
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 Weak variational formulation:

𝛁𝛁𝑠𝑠𝜼𝜼,𝝈𝝈 Ω + �
𝑖𝑖=1

𝑛𝑛𝑓𝑓

𝜼𝜼 , 𝒕𝒕ℎ − 𝑝𝑝ℎ𝒏𝒏𝑖𝑖 Γ𝑓𝑓
 = 𝜂𝜂, 𝑏𝑏 Ω + 𝜼𝜼, �̅�𝒕 Γ𝜎𝜎 =  0 ∀ 𝜼𝜼 ∈ 𝓤𝓤0 ⊂ 𝐻𝐻1 Ω 3

(𝑡𝑡𝑁𝑁ℎ−𝜇𝜇𝑁𝑁,𝑔𝑔𝑁𝑁)
Γ𝑓𝑓

+ 𝒕𝒕𝑇𝑇ℎ − 𝝁𝝁𝑇𝑇 ,Δ𝒈𝒈𝑇𝑇 Γ𝑓𝑓
≥  0 ∀ 𝝁𝝁 ∈ 𝓜𝓜 𝑡𝑡𝑁𝑁

𝜒𝜒,
Δ𝑔𝑔𝑁𝑁
Δ𝑡𝑡 Γ𝑓𝑓

+ 𝜒𝜒, 𝑝𝑝ℎ ℱ − 𝐹𝐹ℱ 𝜒𝜒 + 𝐺𝐺ℱ 𝜒𝜒  − 𝜒𝜒, 𝑞𝑞𝑠𝑠 Γ𝑓𝑓
=  0 ∀ 𝜒𝜒 ∈ 𝒫𝒫0 ⊂ 𝐿𝐿2 Ω

Mathematical model
Governing PDEs, variational formulation and discretization

 The last equation introduces a weighted inner product formally reproducing the TPFA operator in 

a variational fashion:

𝜒𝜒, 𝑝𝑝ℎ ℱ = �
𝑒𝑒

�𝜒𝜒
𝐾𝐾
− �𝜒𝜒

𝐿𝐿
Κ𝐾𝐾𝐿𝐿 �𝑝𝑝ℎ

𝐾𝐾
− �𝑝𝑝ℎ

𝐿𝐿



Mathematical model
Governing PDEs, variational formulation and discretization

 As for the tractions, also spurious modes in the pressure solution may arise in undrained and incompressible conditions 

with the low-order inf-sup unstable selected pair

 We introduce the same stabilization as for the tractions, now balancing the jumps in the elemental pressure values 

[Franceschini et al., 2020]:

𝒥𝒥 𝜒𝜒𝑗𝑗 , 𝑝𝑝ℎ = �
𝑒𝑒

1
𝑒𝑒 �

𝑒𝑒
𝜒𝜒𝑗𝑗 𝑒𝑒

� 𝛶𝛶(𝑒𝑒) � 𝑝𝑝ℎ 𝑒𝑒

which is added to the discrete form of the mass balance equation

 The proposed formulation has the advantage of avoiding any interpolation between traction and pressure fields

 Again, we set up a nested three-cycle procedure: (i) active-set iteration to identify the status of the fracture, (ii) Newton 

iteration to solve the resulting set of non-linear equations, (iii) Krylov iteration to solve the inner linear system with the 

Jacobian matrix 
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Mathematical model
Governing PDEs, variational formulation and discretization

 At a given active-set iteration 𝑙𝑙, we set the Newton iteration:

𝐴𝐴 𝐵𝐵1 𝑄𝑄1
𝐵𝐵2 −𝐻𝐻 0
𝑄𝑄2 0 𝑇𝑇

𝑙𝑙,(𝑘𝑘)
𝛿𝛿𝒖𝒖
𝛿𝛿𝒕𝒕
𝛿𝛿𝒂𝒂

= −
𝒓𝒓𝑢𝑢
𝒓𝒓𝑡𝑡
𝒓𝒓𝑎𝑎

𝑙𝑙,(𝑘𝑘)

Solve
𝒖𝒖
𝒕𝒕
𝒂𝒂

𝑙𝑙,(𝑘𝑘+1)

=
𝒖𝒖
𝒕𝒕
𝒂𝒂

𝑙𝑙,(𝑘𝑘)

+
𝛿𝛿𝒖𝒖
𝛿𝛿𝒕𝒕
𝛿𝛿𝒂𝒂

and update
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 3x3 Jacobian block structure:

𝐴𝐴 𝐵𝐵1 𝑄𝑄1
𝐵𝐵2 −𝐻𝐻 0
𝑄𝑄2 0 𝑇𝑇

A : the elastic stiffness matrix (SPSD)

B1 : the surface measure of the interface elements

Q1 : the projection of B1 along the normal direction to the fracture

B2 : B1
T plus the frictional law derivatives in slip areas

H : the stabilization for the displacement-traction fields (SPSD)

Q2 : the accumulation term derivative in open areas
T : the 5-point stencil transmissibility matrix plus the stabilization (SPD)



Mathematical model
Linear solver
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 The preconditioner is the approximate block LDU factorization of the Jacobian matrix:

−𝐻𝐻 𝐵𝐵2 0
𝐵𝐵1 𝐴𝐴 𝑄𝑄1
0 𝑄𝑄2 𝑇𝑇

≅
𝐼𝐼𝑡𝑡 0 0

−𝐵𝐵𝐶𝐶−1 𝐼𝐼𝑢𝑢 0
0 𝑄𝑄2𝑆𝑆𝑢𝑢−1 𝐼𝐼𝑎𝑎

−𝐶𝐶 0 0
0 𝑆𝑆𝑢𝑢 0
0 0 𝑆𝑆𝑎𝑎

𝐼𝐼𝑡𝑡 −𝐶𝐶−1𝐵𝐵𝑇𝑇 0
0 𝐼𝐼𝑢𝑢 𝑆𝑆𝑢𝑢−1𝑄𝑄1
0 0 𝐼𝐼𝑎𝑎

𝑆𝑆𝑢𝑢 = 𝐴𝐴 + 𝐵𝐵𝐶𝐶−1𝐵𝐵𝑇𝑇

𝑆𝑆𝑎𝑎 = 𝑇𝑇 − 𝑄𝑄2𝑆𝑆𝑢𝑢−1𝑄𝑄1

 Matrix 𝐻𝐻 is replaced with the diagonal local Augmented Lagrangian matrix 𝐶𝐶 as before, while 𝑄𝑄2𝑆𝑆𝑢𝑢−1𝑄𝑄1 is approximated by 

an algebraic “fixed-stress” approach

 𝑆𝑆𝑢𝑢 is symmetric positive definite by construction, while 𝑆𝑆𝑎𝑎 can be indefinite with open fractures (𝑄𝑄2 ≠ 0)

 In the preconditioner application, the inverse of 𝑆𝑆𝑢𝑢 is applied by an AMG approach and the inverse of 𝑆𝑆𝑎𝑎 by a nested direct 

solver because of its 2D connection topology and small size



Mathematical model
Linear solver

 The “fixed-stress” approach arises from coupled linear poroelasticity (discrete Biot’s model):

𝐾𝐾𝒖𝒖 − 𝑄𝑄𝒂𝒂 = 𝒇𝒇

𝐻𝐻𝒂𝒂 + 𝑃𝑃�̇�𝒂 + 𝑄𝑄𝑇𝑇�̇�𝒖 = 𝒒𝒒
𝐻𝐻𝒂𝒂 + 𝑃𝑃 + 𝑄𝑄𝑇𝑇𝐾𝐾−1𝑄𝑄 �̇�𝒂 = 𝒒𝒒 − 𝑄𝑄𝑇𝑇𝐾𝐾−1�̇�𝒇

 If there is no variation in time of the volumetric stress (“fixed-stress”), then 𝐾𝐾𝑏𝑏∇ � �̇�𝒖 = 𝑏𝑏�̇�𝑝, hence replacing in the discrete 

mass balance equation yields:

𝐻𝐻𝒂𝒂 + 𝑃𝑃 + 𝑀𝑀 �̇�𝒂 = 𝒒𝒒

where M is a mass matrix depending on the material parameter 𝑏𝑏2/𝐾𝐾𝑏𝑏

 The idea is to replace the contribution 𝑄𝑄𝑇𝑇𝐾𝐾−1𝑄𝑄 with the mass matrix M for the sake of preconditioning

 The “fixed-stress” approach can be generalized whenever we replace the discrete product 𝑑𝑑𝑖𝑖𝑣𝑣ℎ � ∇ℎ−2 � 𝑔𝑔𝑟𝑟𝑎𝑎𝑑𝑑ℎ with a mass 

matrix with a proper scaling
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Mathematical model
Linear solver
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 For a general problem, it can be non-trivial to 

identify the most appropriate scaling of M

 We can use a fully algebraic interpretation of the 

mass matrix used in the «fixed-stress» approach, 

which allows for an automatic computation of the 

required scaling [Castelletto et al., 2016]

 Consider a set of 𝐼𝐼 adjacent rows 𝑄𝑄2
(𝑖𝑖) and adjacent columns 𝑄𝑄1

(𝑖𝑖), the 𝑖𝑖-th 𝐼𝐼 × 𝐼𝐼 diagonal block of M reads:

𝑀𝑀(𝑖𝑖) = 𝑟𝑟 𝑄𝑄2
(𝑖𝑖) 𝑆𝑆1|𝑖𝑖−1𝑟𝑟 𝑄𝑄1

(𝑖𝑖) or, if 𝑆𝑆1|𝑖𝑖 is rectangular or rank-deficient 𝐼𝐼(𝑖𝑖) = �𝑄𝑄1
(𝑖𝑖) 𝑄𝑄2

(𝑖𝑖) 𝑆𝑆1|𝑖𝑖

where r is the restriction operator keeping only the non-zeros of either a vector or a matrix X, and 𝑆𝑆1|𝑖𝑖 is the restriction of 

𝑆𝑆1 to the rows and columns corresponding to the positions of the non-zero entries of X



Numerical results
Solver performance
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 Weak scalability is investigated considering one refinement level for a structured mesh with 4 fractures

case coarse fine

nu 55080 408045

nt 2700 10800

np 900 3600

nn 58680 422445
Comparison of non-linear convergence profiles and linear iterations 



Numerical results
Solver performance

nu 4668 31050 97176 221046 420600 714018

nt 972 3888 8749 15552 24300 34992

np 324 1296 2916 5184 8100 11664

nn 5964 36234 108840 241782 453060 760674

3D 78.3% 85.7% 89.3% 91.4% 92.8% 93.9%

2D 21.7% 14.3% 10.7% 8.6% 7.2% 6.1%

Number of linear iterations 
for each refinement level

 The algorithm is tested for different ratios between fracture and 3D mesh sizes
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Numerical results
Solver performance

 A tilted well intersecting several fractures is tested, with a linearly increasing flow rate injected for the first 3 s before being 

withdrawn

nu 1,027,926

nt 15,552 

np 5,184 

nn 1,048,662
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Numerical results
Validation, stability and convergence 

 Validation against analytical solutions for frictional behavior
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Sliding Normal traction



Numerical results
Validation, stability and convergence 
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 Validation against analytical solutions for normal behavior

Opening Normal traction



Numerical results
Validation, stability and convergence 
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 Convergence rate for sliding, traction and energy norm

Normal behavior

Frictional behavior



Numerical results
Applications: ground ruptures due to groundwater pumping
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 Simulation of ground ruptures due 

to groundwater pumping:

• Casa Grande, Arizona

• Queretaro, Mexico

• Wuxi, China

 Ruptures caused by emerging bedrocks, abrupt thickness changes and buried ridges



Numerical results
Applications: ground ruptures due to groundwater pumping
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 Shear stress and vertical displacements with emerging 

bedrocks and abrupt changes in the aquifer thickness, 

which cause the generation of ground ruptures

 Ruptures are more likely for thick and shallow aquifers

 One initiated, rupture propagation is essentially governed 

by the pressure decline in the aquifer



Numerical results
Applications: ground ruptures due to groundwater pumping
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 Buried ridges create stress concentrations on the rock 

tip and on its vertical projection on the ground

 Ruptures typically propagate from the land surface 

downward



Numerical results
Applications: ground ruptures due to groundwater pumping
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 Lab experiment setup and numerical results

Water saturation

Horizontal and vertical 
displacements
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 The interest in developing UGS projects is continuously increasing worldwide                about 300 UGS sites in Europe, 

more than 400 UGS sites in the US

 Geohazards possibly associated with UGS activities:

• Formation integrity

• Leakage from the reservoir

• Land motion

• Induced and/or triggered seismic events

 Coping with such issues is necessary for health and safety as 

related to public perception, economic risk and environmental 

impact

from Ellsworth (Science, 2013)

Numerical results
Applications: fault activation in UGS activities
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 Cases of seismic activity have been recently recorded in a few UGS plants located 

in the Rotliegend formation, The Netherlands:

• Primary Production

• Cushion Gas injection

• Storage activities

 The Roetliegend formation spans a depth range between 2000 and 4700 m and is 

characterized by highly compartmentalized and fractured reservoirs in stiff 

sandstone rocks overlain by salt deposits (the Zechstein formation)

 Our aim is to develop mathematical and numerical models to simulate the possible inception of fault motion also in 

«unexpected» configurations

Numerical results
Applications: fault activation in UGS activities
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 Schematic geometry representative of the 

typical configuration of Ducth UGS fields:

• Independent blocks with different pressures

• Bounding vertical and sub-vertical faults

• Viscous salt formations on top 

Numerical results
Applications: fault activation in UGS activities
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LAYER DENSITY 
(kg/m3) 

YOUNG MODULUS 
(GPa) 

POISSON RATIO 

Overburden 2200 10.0 0.25 
Zechstein Salt 2100 40.0 0.3 

Reservoir (Upper Rotliegend) 2400 11.0 0.15 
Underburden 2600 30 0.2 

 

 Geomechanical parameters typical of the Rotliegend formation

 Almost isotropic initial stress state (M1=0.74, M2=0.83) with principal directions oriented like the bounding faults

Numerical results
Applications: fault activation in UGS activities
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 Micro-seismic activity recorded in gas storage 

reservoirs in The Netherlands, during both the 

primary production and the storage phase 

 Computational analysis to investigate the origin 

and the conditions that can be favorable to 

occurrences

Norg UGS field

Numerical results
Applications: fault activation in UGS activities
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 The pressure history prescribed in each block of the UGS field includes 

a Primary Production (PP), Cushion Gas Injection (CGI), and a Gas 

Storage (GS) stage

 A loading step corresponds to a 1-year time interval

 The potential for fault reactivation is measured by the criticality index:

𝜒𝜒 =
𝒕𝒕𝑇𝑇 2
𝜏𝜏𝐿𝐿

=
𝒕𝒕𝑇𝑇 2

𝑐𝑐 − 𝑡𝑡𝑁𝑁 tan 𝜑𝜑 𝒈𝒈𝑇𝑇 2

 A sensitivity analysis on different configuration parameters has been carried out to identify critical situations:

• Block offset (0-200 m)

• Central fault dip (-25° - 25°)

• Reservoir, caprock, and fault properties

• Biot coefficient (0.6 – 1.0)

• Initial stress regime (M1 = M2 = 0.4)

• Pressure variation (0-200 bar)

PP

CGI

GS

Numerical results
Applications: fault activation in UGS activities
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|τ | and χ at the end of primary 
production

Numerical results
Applications: fault activation in UGS activities
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top

bottom

reservoir 3293

2548

4038

(a)                                                                                                                          (b)

(c)

l.s. #0             10                 11                 12              12.5               13   

reservoir

top

bottom

side -
burden

F2
inactive fault                    active fault                reservoir top/bot

compaction compaction expansionexpansionexpansion

T    

C    

B    

T
C
B

end
PP

end
CGI

end
GS

 Fault activation during 

primary production leads 

to a stress redistribution 

 A new (deformed) 

"equilibrated" configuration 

that is newly loaded, in the 

opposite direction, when 

the pressure variation 

changes the sign

Numerical results
Applications: fault activation in UGS activities
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 A weakening model is implemented to account for the variation of the friction angle from 

static to dynamic conditions at the fault slipping and a Maxwell model is used to simulate 

the viscous behavior of the top salt Zechstein formation

�
𝜑𝜑 = 𝜑𝜑𝑠𝑠 − 𝒈𝒈𝑇𝑇 2

𝜑𝜑𝑠𝑠 − 𝜑𝜑𝑑𝑑
𝑑𝑑𝑐𝑐

, 𝒈𝒈𝑇𝑇 2 ≤ 𝑑𝑑𝑐𝑐

𝜑𝜑 = 𝜑𝜑𝑑𝑑, 𝒈𝒈𝑇𝑇 2 > 𝑑𝑑𝑐𝑐
̇𝜺𝜺𝑣𝑣 = 𝑉𝑉 𝜇𝜇 𝝈𝝈, 𝜇𝜇 = 1017 𝑃𝑃𝑎𝑎 � 𝑠𝑠

Numerical results
Applications: fault activation in UGS activities
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 The initial stress regime can play a major role: 

decreasing significantly the horizontal principal 

components favors an early fault reactivation, 

with a large area critically stressed and 

significant sliding

 Factors increasing the activation risk: (1) a 

reduced friction angle; (2) an offset between 

producing blocks; (3) stiffness contrasts between 

reservoir, caprock, sideburden, and 

underburden; (4) uneven pressure change in 

adjacent compartments

Numerical results
Applications: fault activation in UGS activities
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 Fault reactivation may occur “unexpectedly” during Cushion Gas and Underground Gas Storage stages, following more 

expected reactivations during Primary Production

 Activation during Primary Production leads to a stress redistribution and a new "equilibrated" configuration that is re-

loaded, in the opposite direction, when the pressure variation changes the sign at the Cushion Gas injection

 The settings more prone to activation during Primary Production are also the most critical ones during Cashion Gas 

injection and Underground Gas Storage

Numerical results
Applications: fault activation in UGS activities



Conclusions
Take-away message and future work

50/55

 Work objective: development of a coupled model for the simulation of frictional contact mechanics and fluid flow in 

fractured porous media

 Main characteristics of the proposed approach: (1) low-order Finite Elements for the mechanics, (2) Lagrange 

multipliers to prescribe the contact constraints, (3) classical Finite Volume simulation of flow in fractures

 Most significant results:

Future work

 Extension to (multi-phase) flow in the porous matrix

 Parallel implementation with GPU acceleration

 Application to other storage problems, such as CO2 sequestration and Hydrogen storage

o Introduction of a global stabilization and an active-set strategy to guarantee stability and robustness

o Development of robust, scalable and efficient preconditioning techniques for the inner linear solver

o Successful application to a number of real-world problems: hydraulic fracturing, ground ruptures, fault stability
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