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Overview

Introduction: History, notation, activation functions,
architectures, interpretability

Examples: Hat function, square function, composition, addition,
cos(ax)

Function classes: Upper bounds for function spaces, fixed
architecture, variable architecture

Barron classes: Definition, recovery by ANN’s

Lower bounds: VC-dimension, continuous widths, lower bounds
for shallow and deep networks

Riesz basis: New univariate and multivariate Riesz basis of
ANN’s, avoiding curse of dimensionality
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Introduction

J. Vyb́ıral Mathematics of Neural Networks



Introduction Examples Function classes Barron classes Lower bounds Riesz basis

Neural Networks

Artificial neural networks (ANN):

Neurology and biological neural networks & mathematical
models: Warren McCulloch and Walter Pitts, 1943

General idea: Simple building blocks (biological neurons)
connected in a large network

In mathematical biology, the effect of complex behavior arising
from simple interactions of agents is well-known

Frank Rosenblatt (1958), Marvin Minsky and Seymour Papert:
Perceptrons (1969) - model of “perceptron”, i.e., artificial neuron
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Biological and artificial neurons
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Artificial neuron - perceptron

Biological motivation: Neuron combines several inputs (from
other neurons), if the inputs are strong enough, the neuron gets
“activated” and sends some signal out
Mathematical model:

Neuron gets n real inputs x1, . . . , xn ∈ R
combines them linearly - i.e., computes an inner product w · x =
w1x1 + · · ·+ wnxn = 〈w , x〉, where w = (w1, . . . ,wn) are weights
if this inner product is large enough (larger than some real bias
b ∈ R), it gives some output, otherwise the output is zero

Perceptron is modeled by a function

f (x) = 1{〈w ,x〉≥b} =

1, if 〈w , x〉 − b ≥ 0

0, otherwise
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ANN’s - activation functions

The Heaviside function 1 can be replaced by many other choices:
monotone, non-linear, bounded or unbounded range,
(continuously) differentiable, etc.

ReLU activation function, K. Fukushima (1969)

ReLU(x) = max(0, x) rectified linear unit

σ(x) = 1
1+e−x sigmoid

tanh(x) hyperbolic tangent

ln(1 + ex ) Softplus
x

1+e−x Sigmoid linear unit (SiLU)
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Networks of neurons

(Large) number of neurons get connected by a graph and output
of some neurons become inputs of the others, based on the
connections in the graph
Example:
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Feedforward neural networks

Feedforward neural networks:

Artificial neurons are ordered in layers

outputs of jth layer become inputs for (j + 1)th layer

Layer0 are the inputs

Last layer are the outputs
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Feedforward neural networks

Affine function: f : Rn1 → Rn2 :
f (x) = Mx + b, where M ∈ Rn2×n1 is a matrix and b ∈ Rn2 .

Let d ,W , L be positive integers
ReLU(x1, . . . , xd ) = (ReLU(x1), . . . ,ReLU(xd ))
a feed-forward ReLU network N with width W and depth L is a
collection of L + 1 affine mappings A(0), . . . ,A(L), where
A(0) : Rd → RW , A(j) : RW → RW for j = 1, . . . , L− 1 and
A(L) : RW → R. Each such a network N generates a function of
d variables

A(L) ◦ ReLU ◦A(L−1) ◦ · · · ◦ ReLU ◦A(0).

ΥW ,L: the set of all functions, which are generated by some
feed-forward ReLU network with width W and depth L

J. Vyb́ıral Mathematics of Neural Networks



Introduction Examples Function classes Barron classes Lower bounds Riesz basis

1   layer 2   layer (L-1)   layer L  layer
thstndstinput output

Rd

∈
x(0)

RW

∈

x(1)

RW

∈

x(2)

RW

∈

x(L−1)

RW

∈

x(L)

R

∈

y

Figure: Feed-forward ReLU network with length L, width W

J. Vyb́ıral Mathematics of Neural Networks



Introduction Examples Function classes Barron classes Lower bounds Riesz basis

Types of networks

Many different architectures:

Convolutional Neural Networks (CNNs): used in image analysis,
different type of layers, apply local filters

Recurrent Neural Networks (RNNs): sequential data, used in
language processing and time series prediction

Transformers: used in Language Processing
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Training

We assume some training data (xi , g(xi )), i = 1, . . . ,N is given

We fix the architecture and its parameters

We set the weights to fit as good as possible to the known data
(backpropagation algorithm)

Large networks require large amount of data and large number of
parameters (overfitting?)

Extensive use of data and computational power (GPU’s by
NVIDIA)
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Interpretability

Difficult interpretability - issue in critical applications

Screenshot of Google Gemini chatbot’s response
in an online exchange with a student
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Success stories

Pre-NN’s: Deep Blue - IBM chess playing; 1996 - first matches with
Garry Kasparov, winning in 1997

DeepMind (London-based company, acquired by Google): AlphaGo
(2015)

Other games: poker (incomplete information game), bridge, Starcraft II,
DotA 2

Computer Vision: character recognition, facial recognition, medical
imaging, and autonomous vehicles

Natural Language Processing (NLP): language translation, sentiment
analysis, and chatbots

Speech Recognition: Siri, Alexa, . . .

ChatGPT (Generative pre-trained transformer)
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ChatGPT vs. DeepSeek

Forty percent of families in a city have one child, thirty percent of
families have two children, twenty percent of families have three
children, and ten percent of families have four children.
What is the probability that a randomly selected child has a sister?
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Examples
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Example: the hat function
The hat function H : [0, 1]→ [0, 1],

H(x) =

2x , 0 ≤ x ≤ 1
2

2(1− x), 1
2 < x ≤ 1

= 2(x − 0)+ − 4
(

x − 1
2

)
+

=
[
2 −4

]
ReLU

{[
1
1

]
x +

[
0
−1

2

]}

belongs to Υ2,1.
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Compositions and deep networks

Example (Telgarsky) H ∈ Υ2,1 ⇒ H◦k := H ◦ H ◦ · · · ◦ H︸ ︷︷ ︸
k times

∈ Υ2,k .

1

1

1

1

1

1

1
2

1
2

1
2

1
4

1
4

1
8

H H◦2 H◦3
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Hat function revisited

Hat function H : R→ [0, 1] on the whole R:

H(x) =


2x , if 0 ≤ x < 1/2,

2(1− x), if 1/2 ≤ x ≤ 1,

0 otherwise.

H(x) = 2 ReLU(x)− 4 ReLU(x − 1/2) + 2 ReLU(x − 1)

= W2 ◦ ReLU ◦W1

W1(x) = (x , x − 1/2, x − 1)T

W2(y) = 2y1 − 4y2 + 2y3.

. . . can be again iteratively composed with itself.
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Quadratic function

We would like to reproduce the product function (x , y)→ x · y

With the ReLU activation function - it is surprisingly difficult!

The ANN’s with ReLU generate only piecewise linear functions

Due to
x · y = (x + y)2/4− (x − y)2/4

it is enough to approximate the univariate function x → x2

We approximate F (x) = x − x2 by iterated H functions!
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From: Deep Neural Network Approximation Theory (by Elbrächter,
Perekrestenko, Grohs, and Bölcskei, 2021)
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Composition and addition

If f1 : Rd1 → Rd2 and f2 : Rd2 → Rd3 are well representable by
ANN, then so is f2 ◦ f1

- We first calculate f1(x) by an ANN, the output serves as an
input for the ANN of f2.
- We “glue” the networks after each other, we add the lengths

If f1 : Rd → R and f2 : Rd → R can be represented by neural
networks, then f1 + f2 can be also well represented.
- We “glue” the networks on the top of each other: length is the
same, the widths add together
- Or we glue the networks after each other, the inputs are passed
as well as the already calculated outputs: lengths are added
- Or we do something in between
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Composition and addition

Proposition (Properties of ΥW ,L, d = 1)
Let W ≥ 2. For any Y1 ∈ ΥW ,L1 , . . . ,Yk ∈ ΥW ,Lk the following holds:

(i) The composition of the Yi satisfies

Yk ◦ · · · ◦ Y1 ∈ ΥW ,L, L = L1 + · · ·+ Lk .

(ii) The sum of the Yi satisfies

Y1 + · · ·+ Yk ∈ ΥW +2,L, L = L1 + · · ·+ Lk .
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Composition and addition

Proof: (i) - composition
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Composition and addition

(ii) - addition
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Approximation of cos(ax)

Now we can

Approximate x → xk for k ≥ 2

Approximate x →
m∑

i=0
ai x i

Approximate cos(ax) by a partial sum of its Taylor series

Put all these pieces together!

Theorem (EPGB): For a,D > 0 there is an ANN, which
approximates cos(ax) on [−D,D] uniformly up to ε > 0 error
with length L ≤ C(log2(ε−1) + log(daDe)) and width W ≤ 9

J. Vyb́ıral Mathematics of Neural Networks
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Function classes
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Universal approximation theorem(s)

Appeared around 1990
Show the density of functions generated by ANN’s in some
function classes, typically C(Ω)
Limit (aka asymptotic) theorems - usually no guarantee on W , L

Cybenko (1989): Sums
N∑

j=1
αjσ(yT

j x + θj) are dense in C([0, 1]d )

- the width is arbitrary, σ is a rather general function
Hornik, Stinchcombe, White (1989): Universal approximation of
ANN’s with one hidden layer.
Maiorov and Pinkus (1999): There is an activation function σ,
such that for any f ∈ C([0, 1]d ) there is a two-layer network with
width bounded by c · d , which approximates f up to ε in the
uniform norm.
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What we do?

We are interested in approximation properties of ANN’s on whole
function classes, not only for one particular function (like cos(ax))

Questions we address:

(mainly) ReLU activation function

Different function classes (Sobolev, Besov, BV , Lipschitz, etc.)

Dependence of the (worst-case) error of approximation on width
W and length L

Decay rates - upper bounds

Lower bounds
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What we do not do?

(Important) questions we do not address

The role of different activation functions

Relation to backpropagation

- and to trained networks

Lack of overfitting?!

Typical good local minima?!

. . . and many others
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Re-using existing decompositions

For many function spaces X (Ω) we have suitable (and optimal)
decompositions into Fourier basis, splines, wavelets, curvelets and
other -lets

If we can represent/approximate these building blocks as ANN,
then we first decompose f ∈ X (Ω) into these blocks, then
represent these blocks as ANN’s and finally, we sum it all up!

Transference principle
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Yarotsky (2017):
Error bounds for approximations with deep ReLU networks

‖f ‖W n,∞([0,1]d ) := max
α:|α|≤n

sup
x∈[0,1]d

‖Dαf (x)‖

|α| = α1 + · · ·+ αd

“Error” is always the error in the uniform norm

Theorem: For n, d ∈ N and 1 > ε > 0, there is an ReLU ANN
architecture, such that (with appropriate weights) approximates
every f from the unit ball of W n,∞([0, 1]d ) up to error ε
- fixed architecture for different f ’s
- L ≤ c(ln(1/ε) + 1), number of weights ≤ cε−d/n(ln(1/ε) + 1)
- c = c(d , n)
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Yarotsky (2017):
Proof idea:

Decomposition of unity φm(x), m = (m1, . . . ,md ) ∈ {0, . . . ,N}d

Pm(x) - local polynomial approximation of f around m/N

f1(x) =
∑
m
φmPm(x)

‖f − f1‖∞ ≤ ε/2

We approximate terms φmPm(x) by ANN’s

And sum them up!
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Speed up through adaptivity - Yarotsky (2017)

Choosing different architecture
for every f can speed up the approximation!

Consider d = 1 and f ∈W 1,∞([0, 1])

How many weights do we need for uniform ε-error?

Previous approach: number of weights O(ε−1 · ln(1/ε))
Piece-wise linear approximation: number of weights O(ε−1)
Choosing adaptive network architecture: O(ε−1/ ln(1/ε))
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Speed up through adaptivity - Yarotsky (2017)

Proof idea:

We first approximate f by piece-wise linear function f̃1, but on a
scale mε,m ≈ ln(1/ε) > 1

We add to f̃1 a correction term f̃2, which bridges the grid of scale
mε to the scale ε

The function f − f̃1 vanishes at 0 and mε. We split [0,mε] into
m intervals and collect functions γ with

γ(0) = γ(mε) = 0, γ(jε)− γ((j − 1)ε) ∈ {−2ε, 0, 2ε}

Finitely many pre-cached functions; adding the correct terms
reduces the error of approximation
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General function classes

Previous approach can be vastly generalized!

We can consider Ω = [0, 1]d , or a general domain Ω ⊂ Rd

f can be from the Sobolev space W s(Lq(Ω)) or Besov space
Bs

r (Lq(Ω))

The error of approximation can be measured in Lp(Ω)

Siegel (2023): For W fixed (W = 25d + 31) and L→∞, the
error decay rate is L−2s/d

The factor 2 is due to the “bit-extraction technique” of Bartlett,
Maiorov, and Meir (1998)
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Shallow vs. deep neural networks

Approximation-theoretic properties of deep neural networks:
R. DeVore, B. Hanin, and G. Petrova, Neural network
approximation, Acta Numerica 30 (2021): 327–444
R. Gribonval, G. Kutyniok, M. Nielsen, and F. Voigtlaender,
Approximation spaces of deep neural networks, Constr. Appr.
55(1) (2022), 259–367
D. Elbrächter, D. Perekrestenko, P. Grohs, and H. Bölcskei, Deep
neural network approximation theory, IEEE Trans. Inf. Theory
67(5) (2021), 2581–2623.

Existence of functions which, can be expressed through a small
three-layer network, but can only be represented through a very
large two-layer network: R. Eldan and O. Shamir (2016)

Further examples: H. N. Mhaskar and T. Poggio (2016)
J. Vyb́ıral Mathematics of Neural Networks
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Barron classes
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Barron classes - definition

Barron 1994:

Let f : Rd → R (or C), let f̂ be its Fourier transform.

Barron classes on Rd : We define

‖f ‖B :=
∫
Rd
‖ξ‖2 · |f̂ (ξ)|dξ,

where ‖ξ‖2
2 =

∑
j |ξj |2

Barron classes on Ω ⊂ Rd : By restriction

J. Vyb́ıral Mathematics of Neural Networks
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Convex combinations and random sampling

We need “empirical method of B. Maurey”,
a.k.a. “Approximate Caratheodory’s theorem”

Theorem: Let T be a subset of the unit ball of RD. Then, for every
n and every x ∈ conv(T ), there are x1, . . . , xn ∈ T with∥∥∥∥∥∥x − 1

n

n∑
j=1

xj

∥∥∥∥∥∥
2

≤ 1√
n .

Remarks:

D does not matter, Hilbert space H possible

Probabilistic proof!?
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Convex combinations and random sampling - proof

Proof:
Let x ∈ conv(T ), i.e., x =

∑
k γkyk ; γk ≥ 0,

∑
k γk = 1, yk ∈ T

Let g be a random variable: P(g = yk) = γk

Let g1, . . . , gn be n independent copies of g ; put x̃ = 1
n
∑n

j=1 gj

Eg =
∑

k yk · P(g = yk) = x ; Ex̃ = x
Finally

E‖x − x̃‖2 = E
∥∥∥1

n

n∑
j=1

(x − gj)
∥∥∥2

= 1
n2

n∑
j,k=1

E〈x − gj , x − gk〉

= 1
n2

n∑
j=1

E‖x − gj‖2 = 1
nE‖x − g‖2 = 1

nE‖g − Eg‖2

= 1
n (E‖g‖2 − ‖Eg‖2) ≤ 1

n .

There is some realization of g1, . . . , gn, which is at least so good!
J. Vyb́ıral Mathematics of Neural Networks
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Barron class - approximation by ANN’s

Let B = {x ∈ Rd : ‖x‖2 ≤ 1} be the unit ball, µ - prob. measure on B

Theorem (Barron - 1993):
For every f : Rd → R with

∫
‖ξ‖2 · |f̂ (ξ)|dξ = C

there exists
fn(x) =

n∑
k=1

ckφ(ak · x + bk) + c0

with
‖f − fn‖2

L2(B,µ) ≤
(2C)2

n .

J. Vyb́ıral Mathematics of Neural Networks
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Barron class - approximation by ANN’s

Proof idea: f̂ (ξ) = eiθ(ξ)|f̂ (ξ)|

f (x) = Re
∫
Rd

eiξ·x f̂ (ξ)dξ = Re
∫
Rd

eiξ·x eiθ(ξ)|f̂ (ξ)|dξ

=
∫
Rd

cos(ξ · x + θ(ξ))|f̂ (ξ)|dξ

f (x) is a linear combination of functions x → c cos(ξ · x + b)

come over to convex combination

cos(〈·, x〉+ b) is in the convex hull of φ(〈·, x〉+ b)

apply the “empirical method of B. Maurey”
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Barron class - extensions

For general domain, replace ‖ξ‖2 with ‖ξ‖B := supx∈B |ξ · x |

There are no implicit constant depending on d

Use of these spaces avoids the curse of dimensionality

The construction is only implicit, randomized

J. Vyb́ıral Mathematics of Neural Networks



Introduction Examples Function classes Barron classes Lower bounds Riesz basis

Lower bounds
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Lower bounds - general setting

By definition, we want to show (for example) that
sup
f ∈X

inf
N∈ΥW ,L

‖f −N‖Y
is large.

Formally, it is enough to find one f ∈ X , which does not look like
ANN’s from ΥW ,L

Instead, we want to show that the class X of all possible functions
f ∈ X , which we want to recover/approximate is too large, to be
approximated by ANN’s with a small number of parameters.

We introduce some complexity measure of a class of functions
and show that the complexity of X is larger than that of ΥW ,L, if
W and L are small.

J. Vyb́ıral Mathematics of Neural Networks
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VC dimension - definition

Vapnik–Chervonenkis dimension

Let X be a set and H a system of its subsets. We say that C ⊂ X is
shattered by H if H ∩ C takes all 2|C | different values when H runs
over H, i.e., if

|{H ∩ C : H ∈ H}| = 2|C |, or

for every B ⊂ C there exists H ∈ H such that H ∩ C = B

The Vapnik–Chervonenkis dimension of H (the VC dimension of H) is
the size of the largest C shattered by H

J. Vyb́ıral Mathematics of Neural Networks
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VC dimension - examples

Examples
If C is shattered by H, then 2|C | = |{H ∩ C : H ∈ H}| ≤ |H|
. . . hence VC-dim(H) ≤ log2(|H|)
X = {1, . . . , n} and H are all subsets of X with at most k
elements, then VC-dim(H) = k

Sauer–Shelah lemma: VC-dim(H) ≤ k implies |H| ≤
k∑

j=0

(
n
j

)
Rademacher complexity of H ⊂ Rd

Rad(H) := 1
d Eσ

sup
σ∈H

d∑
j=1

σjaj


σ1, . . . , σd - independent Rademacher variables

J. Vyb́ıral Mathematics of Neural Networks
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VC dimension of sets of functions

VC-dimension of a set of binary functions
Let X be a set and let F be a set of functions f : X → {0, 1}. We
define Hf := {x : f (x) = 1} ⊂ X and

VC-dim(F) := VC-dim({Hf : f ∈ F})

VC-dimension of a set of functions
Let X be a set and let F be a set of functions f : X → R. We define

VC-dim(F) := VC-dim({sgn(f ) : f ∈ F})

J. Vyb́ıral Mathematics of Neural Networks
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VC dimension of ANN’s

Bartlett, Maiorov, Meir (1998):

Fix an architecture of an ANN with ω parameters and L layers
and piecewise polynomial activation function. The set F of all
functions, which we obtain by varying the ω parameters has

VC-dim(sgn(F)) ≤ c(ωL logω + ωL2)

For fixed L: O(ω logω)

Lower bound: There is an architecture, where
VC-dim(sgn(F)) ≥ c ωL

J. Vyb́ıral Mathematics of Neural Networks
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VC dimension of ANN’s - proof idea

Upper bound: We count, layer-by-layer the number of all possible
vectors

(sgn(f (x1)), . . . , sgn(f (xn))) ∈ {0, 1}n

if f goes over F

Lower bound:
Construction of a net with O(ν) weights and O(µ) layers
If ai =

∑µ
j=1 2−jai ,j is a binary representation of the parameters

a1, . . . , aν , then for the input x = (el , em) ∈ {0, 1}ν+µ the net
outputs al ,m

The set {(el , em) : 1 ≤ l ≤ ν, 1 ≤ m ≤ µ} with ν · µ elements is
shattered by the set of ANN’s when a ∈ {0, 1}µ×ν

J. Vyb́ıral Mathematics of Neural Networks
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Lower bounds for function recovery - widths

Lower bounds by continuous nonlinear widths

Theorem (DeVore, Howard, Micchelli, 1989):
Let M : W n,∞([0, 1]d )→ Rω be continuous and let
η : Rω → C([0, 1]d ) be arbitrary. If ‖f − η(M(f ))‖∞ ≤ ε for all f in
the unit ball of W n,∞, then ω ≥ cε−d/n.

Hence:
If the architecture is fixed, the parameters of the network depend
continuously on f , and it approximates every f ∈W n,∞ up to uniform
ε-error, then the network must have at least ε−d/n parameters.

The upper bound of Yarotsky (fixed architecture) is nearly optimal
Kainen, Kůrková, Vogt (1999): The optimal weights do not
depend continuously on f

J. Vyb́ıral Mathematics of Neural Networks
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Lower bounds for function recovery - VC dimension

Yarotsky (2017):

Consider points x1, . . . , xNd ∈ [0, 1]d , mutual distance ≥ 1/N

Construct f ∈W n,∞, which takes ±2ε values at x1, . . . , xNd

The VC-dimension of W n,∞ is large

Use upper bounds on VC-dimension of ANN’s

Theorem:

Fixed architecture for approximating W n,∞([0, 1]d ) up to ε must
have at least ω ≥ ε−d/(2n) weights.

If, moreover, L ≤ c lnp(1/ε), then ω ≥ ε−d/n ln−2p−1(1/ε).
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Riesz basis of neural networks
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Multivariate Riesz basis of ReLU neural networks

Question: Can we find a (nearly) orthonormal system, which is
easily reproducible by ReLU-neural networks?

• Studied for d = 1 in [DDFHP22]:
I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova.
Nonlinear Approximation and (Deep) ReLU Networks.
Constr. Appr. 55:127–172 (2022).

99K They produced a system of piece-wise linear functions, which
resembles the trigonometric Fourier system
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d = 1: Univariate Riesz basis

Definition
For x ∈ [0, 1], we define

C(x) = 4
∣∣∣∣x − 1

2

∣∣∣∣− 1 =

1− 4x , x ∈ [0, 1/2),

4x − 3, x ∈ [1/2, 1]

and

S(x) =
∣∣∣∣2− 4

∣∣∣∣x − 1
4

∣∣∣∣∣∣∣∣− 1 =


4x , x ∈ [0, 1/4),

2− 4x , x ∈ [1/4, 3/4),

4x − 4, x ∈ [3/4, 1].

For x ∈ R, we extend this definition periodically, i.e.
C(x) = C(x − bxc) and S(x) = S(x − bxc).

If k ≥ 1 and x ∈ R, we put Ck(x) = C(kx) and Sk(x) = S(kx).
J. Vyb́ıral Mathematics of Neural Networks
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Univariate Riesz basis
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99K C, S emulate/resemble trigonometric functions
J. Vyb́ıral Mathematics of Neural Networks



Introduction Examples Function classes Barron classes Lower bounds Riesz basis

Univariate Riesz basis

Ck(x) and Sk(x) can be easily reproduced by the ReLU ANN’s:

Lemma
For k ∈ N it holds Ck ∈ Υ2,dlog2 ke+1 and Sk ∈ Υ2,dlog2 ke+2

P r o o f :
H ∈ Υ2,1 =⇒ C = 1− 2H ∈ Υ2,1

=⇒ H◦m := H ◦ H ◦ · · · ◦ H ∈ Υ2,m

which implies C2m (x) = C(H◦m(x)) ∈ Υ2,m+1

For arbitrary k ≤ 2m with m := dlog2 ke we derive

Ck(x) = C2m (k2−mx) ∈ Υ2,m+1 = Υ2,dlog2 ke+1.

For S use identity S(x) = C2( x
2 + 3

8 ) ∈ Υ2,2.
J. Vyb́ıral Mathematics of Neural Networks



Introduction Examples Function classes Barron classes Lower bounds Riesz basis

Univariate Riesz basis

Definition
Let H be a real Hilbert space. (xn)n ⊂ H is a Riesz sequence if
∃A,B > 0:

A
∑

n
α2

n ≤
∥∥∥∥∥∑n

αnxn

∥∥∥∥∥
2

≤ B
∑

n
α2

n (�)

for every (αn)n ∈ `2.
(xn)n is called a Riesz basis if the closed span of (xn)n is H.

Theorem (DDFHP22)
The system

R1 := {1} ∪ {
√

3Ck ,
√

3Sk : k ∈ N}
is a Riesz basis of L2([0, 1]).
A and B can be chosen as A = 1/2 and B = 3/2.
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Univariate Riesz basis

We provide an alternative proof based on:

Properties of the Gram matrix (〈Ck , Cl〉)k,l

Gershgorin’s theorem

Further Tools:
• Trigonometric series
• Euler products
• Ramanujan’s formula

C. Schneider and J.Vyb́ıral.
Multivariate Riesz basis of ReLU neural networks.
Appl. Comput. Harmonic Anal. 68 (2024), 101605
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Sketch of the proof:

Step 1: Reformulate the definition of a (finite) Riesz sequence
as an eigenvalue problem of its Gram matrix

H - a real Hilbert space; {xi}Ni=1 ⊂ H; α = (α1, . . . , αN)T ∈ RN

∥∥∥∥∥
N∑

i=1
αi xi

∥∥∥∥∥
2

=
N∑

i ,j=1
αiαj〈xi , xj〉 = αT Gα,

where G = (gi ,j)N
i ,j=1 with gi ,j = 〈xi , xj〉 is the Gram matrix of {xi}Ni=1.

Therefore, (�) is equivalent to

AαTα ≤ αT Gα ≤ BαTα for every α ∈ RN ,

i.e., σ(G) ⊂ [A,B]

J. Vyb́ıral Mathematics of Neural Networks
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Sketch of the proof:

Step 2: Gershgorin circle theorem

σ(G) ⊂
N⋃

i=1

[
gi ,i −

∑
j 6=i
|gi ,j |, gi ,i +

∑
j 6=i
|gi ,j |

]
.

Lemma: Let i , j ∈ N. Then
〈Ci ,Sj〉 = 0;
〈Ci , Cj〉 = 〈Si ,Sj〉 = 0 if i/ gcd(i , j) is odd and j/ gcd(i , j) is even
(or vice versa), i.e., if the prime factorizations of i and j contain a
different power of 2;
If i/ gcd(i , j) and j/ gcd(i , j) are both odd, then

3 · 〈Ci , Cj〉 = 3 · |〈Si ,Sj〉| = gcd(i , j)4

i2 · j2 .

The sign of 〈Si ,Sj〉 is negative if, (i + j)/(2 gcd(i , j)) is even.
In particular, we get 〈Ci , Ci〉 = 〈Si ,Si〉 = 1/3 for all i ∈ N.

J. Vyb́ıral Mathematics of Neural Networks
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Sketch of the proof:

Step 3: Proof of the Lemma:
By Fourier series: ck(x) =

√
2 cos(2πkx)

√
3 Ck = µ

∑
m≥0

1
(2m + 1)2 c(2m+1)k , µ2π

4

96 = 1

Then

3〈Ci , Cj〉 =
∞∑

m,n=0

µ2

(2m + 1)2(2n + 1)2 δ(2m+1)i ,(2n+1)j ,

Solve (2m + 1)i = (2n + 1)j : g = gcd(i , j) and

2m + 1 = j
g · (2l + 1), 2n + 1 = i

g · (2l + 1), l ∈ N0.
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Sketch of the proof:

Step 4: For i odd, estimate
∑

j odd〈Ci , Cj〉

i = qα1
1 . . . qαn

n , primes q1, . . . , qn ≥ 3, α1, . . . , αn ≥ 1
j = qβ1

1 . . . qβn
n · J , with β1, . . . , βn ≥ 0 and J odd with gcd(J , i) = 1

gcd(i , j) =
∏n

u=1 qmin(αu ,βu)
u

Then

∑
j∈N, j odd

3 · 〈Ci , Cj〉 = · · · ≤
∏

p≥3:p prime

1 + 1/p2

1− 1/p2 =

3
2

=⇒ σ(G) ⊂ [1/2, 3/2].
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d = 1: ReLU neural networks

One can reproduce linear combinations of Ck and Sk via ReLU
networks with good control on the depth L:

Theorem (DDFHP22, Thm. 6.2)
Let W ≥ 6. For every k ≥ 1, and set of indices Λ ⊂ N with |Λ| = k,
the set

FΛ :=

∑
j∈Λ

(ajCj + bjSj), aj , bj ∈ R, j ∈ Λ, |Λ| = k

 ⊂ ΥW ,L

L = 2
⌈

k
bW−2

4 c

⌉
(dlog2(λ)e+ 2) with λ := max{j : j ∈ Λ}.

99K deep NN approximation (W is fixed)
J. Vyb́ıral Mathematics of Neural Networks



Introduction Examples Function classes Barron classes Lower bounds Riesz basis

d > 1: Multivariate Riesz basis

Good news: A tensor product of two Riesz sequences is a Riesz
sequence

Bad news: The Riesz constants get multiplied! . . . Ad ,Bd

99K bad dependence on d
Another bad news: For ReLU neural networks it is rather
complicated to calculate x · y
Way out! If α = (α1, . . . , αd ) ∈ Zd , we say that α+> 0 if the first
non-zero index of α is positive.

Theorem (SV24): The system

Rd := {1} ∪ {
√

3C(α · x) : α+> 0} ∪ {
√

3S(α · x) : α+> 0}

is a Riesz basis of L2([0, 1]d ). The constants can be chosen as
A = 1/2 and B = 3/2, independently of d!
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d > 1: ReLU neural networks

One can reproduce the multivariate Riesz basis via ReLU networks:
Theorem (SV24):

For j ∈ N it holds on [0, 1],

Cj ∈ Υ2,dlog2 je+1 and Sj ∈ Υ2,dlog2 je+2

Entries of weight matrices and the bias vectors are bounded by 8.

Let d > 1, α ∈ Zd \ {0}. Then on [0, 1]d

C(α · x) ∈ Υ2,dlog2 ‖α‖1e+2 and S(α · x) ∈ Υ2,dlog2 ‖α‖1e+3,

(‖α‖1 = |α1|+ . . .+ |αd |, weights and biases are bounded by 8)
Let d ≥ 1, {α1, . . . , αk , β1, . . . , βl} ⊂ Zd \ {0}. Then on [0, 1]d

f (x) =
k∑

i=1
aiC(αi · x) +

l∑
j=1

bjS(βj · x) ∈ ΥW ,L, x ∈ [0, 1]d

W = 2(k + l) and L = 2 + maxi=1,...,k;
j=1,...,l

{dlog2(‖αi‖1)e, dlog2(‖βj‖1)e + 1}

(weights and biases bounded by maxi=1,...,k;
j=1,...,l

{8|ai |, 8|bj |, 8})
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Open Problems

Open Problem 1
Are the constants A = 1

2 , B = 3
2 optimal? (probably not)

Open Problem 2
Is it even possible to obtain a tight frame in the sense that
A = B?

Open Problem 3
Does a frame exist which is better than the Riesz basis?
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Applications to approximations of functions

Previous results on function recovery (often) used localization -
decomposition of unity on a tensor grid

Implicit constants (often) depend exponentially on dimension d

We apply the (non-local) Riesz basis!

We decompose f into this basis, keep largest elements and
recover them as ANN’s

J. Vyb́ıral Mathematics of Neural Networks
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Univariate setting

Let s ≥ 0. Then W s([0, 1]) is the set of 1-periodic functions

f (x) = a0 +
∞∑

m=1
am cos(2πmx) + bm sin(2πmx), x ∈ [0, 1]

with ‖f ‖2
W s := a2

0 +
∞∑

m=1
m2s(a2

m + b2
m) <∞.

And F s([0, 1]) is the set of 1-periodic functions

f (x) = α0 +
∞∑

k=1
αkCk(x) + βkSk(x), x ∈ [0, 1],

with ‖f ‖2
F s := α2

0 +
∑∞

m=1 m2s(α2
m + β2

m) <∞.

Theorem: Let 0 ≤ s < 1. Then, W s([0, 1]) = F s([0, 1]).

J. Vyb́ıral Mathematics of Neural Networks



Introduction Examples Function classes Barron classes Lower bounds Riesz basis

Univariate setting

Let s ≥ 0. Then W s([0, 1]) is the set of 1-periodic functions

f (x) = a0 +
∞∑

m=1
am cos(2πmx) + bm sin(2πmx), x ∈ [0, 1]

with ‖f ‖2
W s := a2

0 +
∞∑

m=1
m2s(a2

m + b2
m) <∞.

And F s([0, 1]) is the set of 1-periodic functions

f (x) = α0 +
∞∑

k=1
αkCk(x) + βkSk(x), x ∈ [0, 1],

with ‖f ‖2
F s := α2

0 +
∑∞

m=1 m2s(α2
m + β2

m) <∞.

Theorem: Let 0 ≤ s < 1. Then, W s([0, 1]) = F s([0, 1]).

J. Vyb́ıral Mathematics of Neural Networks



Introduction Examples Function classes Barron classes Lower bounds Riesz basis

Multivariate version

For d ≥ 2 and s ≥ 0, we proceed in the same way!
For

f (x) =
∑

m∈Zd

ame2πim·x , x ∈ [0, 1]d

we put ‖f ‖2
W s = |a0|2 +

∑
m∈Zd\{0}

‖m‖2s
2 · |am|2 <∞.

And for

f (x) = α0 +
∑

k+>0

[
αkCk(x) + βkSk(x)

]
, x ∈ [0, 1]d .

we define ‖f ‖2
F s := α2

0 +
∑

k+>0
‖k‖2s

2 (α2
k + β2

k) <∞

Theorem: Let 0 ≤ s < 1. Then, W s([0, 1]d ) = F s([0, 1]d ) in the
sense of equivalent norms. The constants of equivalence of these
norms depend on s but are independent of d .
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Multivariate version

For d ≥ 2 and s ≥ 0, we proceed in the same way!
For

f (x) =
∑

m∈Zd

ame2πim·x , x ∈ [0, 1]d

we put ‖f ‖2
W s = |a0|2 +

∑
m∈Zd\{0}

‖m‖2s
2 · |am|2 <∞.

And for

f (x) = α0 +
∑

k+>0

[
αkCk(x) + βkSk(x)

]
, x ∈ [0, 1]d .

we define ‖f ‖2
F s := α2

0 +
∑

k+>0
‖k‖2s

2 (α2
k + β2

k) <∞

Theorem: Let 0 ≤ s < 1. Then, W s([0, 1]d ) = F s([0, 1]d ) in the
sense of equivalent norms. The constants of equivalence of these
norms depend on s but are independent of d .
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Recovery by ANN’s

Let f ∈W s([0, 1]d ). Then f ∈ F s([0, 1]d )
(with equivalent norms)

It can be decomposed into the Riesz basis of Ck and Sk

Fix R > 0 real and split

f = fR + f R =
(
α0 +

∑
k+>0:‖k‖2≤R

. . .
)

+
( ∑

k+>0:‖k‖2>R
. . .
)
.

Recover fR exactly(!) by an ANN; the error is given by f R

We need to:
Estimate the size of the sum in fR

Estiamte the norm of f R
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Gauss circle problem

Let d ≥ 1 and t ≥ 0. Then
N(t, d) := {k ∈ Zd : ‖k‖2 ≤ t}

is the number of integer lattice points in a ball with radius t ≥ 0.

Lemma: There exist two absolute constants c1, c2 > 0 such that for
every d ≥ 1 and t ≥ 0 the following holds.
(i) If t ≥

√
d/2, then

N(t, d) ≤
( c1t√

d

)d
.

(ii) If 0 < t ≤
√

d/2, then

N(t, d) ≤
(c2d

t2

)t2

.

J. Vyb́ıral Mathematics of Neural Networks



Introduction Examples Function classes Barron classes Lower bounds Riesz basis

Approximation by ANN’s from the Riesz basis

Theorem:
Let 0 < s < 1 and 0 < ε < 1. Let R := (Cs/ε)1/s . Then, for every
f ∈W s([0, 1]d ) there is an ANN N ∈ ΥW ,L

d with

W = 4 · N(R, d) and L ≤ 4 + log2

(
R ·

√
min(R, d)

)
such that

‖f −N‖2 ≤ ε · ‖f ‖W s .
Remarks:

The architecture does not depend on f
Cs is independent on d
If ε > 0 is fixed and d →∞, then L is bounded and W grows
polynomially in d =⇒ we avoid the curse of dimensionality
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Barron spaces

Let s ≥ 0 and define Fourier-analytic Barron spaces

Bs([0, 1]d ) : ‖f ‖Bs := |a0|+
∑

m∈Zd\{0}
‖m‖s2 · |am|

and Barron spaces with respect to Ck and Sk

Bs([0, 1]d ) : ‖f ‖Bs := |α0|+
∑

k+>0
‖k‖s2 · (|αk |+ |βk |).

Theorem: Let 0 ≤ s < 1. Then Bs([0, 1]d ) = Bs([0, 1]d ) in the sense
of equivalent norms. (The constants of equivalence of these norms
depend on s but are independent of d .)
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Barron spaces

We start again with

f (x) = α0 +
∑

k+>0

[
αkCk(x) + βkSk(x)

]
, x ∈ [0, 1]d

with
‖α‖bd

s
=
∑

k+>0
‖k‖s2 · |αk | <∞

(and same for β)
Best n-term approximation: We keep the largest terms, so that the
remainder is small in `2

Remarks:

Therefore, the architecture depends on f

Again, we can avoid the curse of dimensionality.
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Barron spaces

Theorem: Let 0 < s < 1 and 0 < ε < 1. Let R := (C/ε)1/s and n
such that σn(bd

s , `2) < cε. Then, for every f ∈ Bs([0, 1]d ) there is an
ANN N ∈ ΥW ,L

d with
W = 4n and L ≤ 4 + log2

(
R ·

√
min(R, d)

)
such that

‖f −N‖2 ≤ ε · ‖f ‖Bs .
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ChatGPT vs. DeepSeek

Forty percent of families in a city have one child, thirty percent of
families have two children, twenty percent of families have three
children, and ten percent of families have four children.
What is the probability that a randomly selected child has a sister?

ChatGPT: 38.75%
Are you sure?: 38.75%
You are wrong!: 38.75%
Think again: 110%, 50%, 45%, 50,83%, 80%, 65%, 41,9%

DeepSeek: 60%
Are you sure?: 60%
You are wrong!: 60%
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Thank you for your attention!
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