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Overview
A preamble 
My guiding example: Earth mantle convection 
Supercomputers 
Scalable Solvers, Multigrid 
Automatic Program Generation 
Scalability, Performance  
Textbook Efficiency 

Lattice Boltzmann for Complex Flows (time permitting)

Solvers for Extreme Scale Computing  -  Ulrich Ruede

My talk presents results of my teams 
and years of collaboration with colleagues
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What is the fastest solver for 
Poisson’s equation?
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The context:

Scientific Computing is about efficient methods 
Numerical algorithms require a tradeoff between 
accuracy and cost 

If accuracy is irrelevant, cheap algorithms are 
trivial to find 
If cost is irrelevant, accuracy is trivial to 
achieve 

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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Setting accuracy in relation to cost:
We need metrics for 

cost (algorithmic complexity) 
accuracy (magnitude of error) 

Both are surprisingly unclear 
Cost: counting #unknowns, counting #FLOPS, memory 
consumption, run time, energy consumption, …. 
Accuracy: Residual vs. error? Which norm?  
Often not the solution is needed, but a functional thereof, … 

All this makes a difference in what is needed 
The new kid on the block: 

Deep Learning (for PDE) 
When your natural intelligence fails, use an artificial one!

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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Making the question more specific:
When teaching linear algebra we insist that students learn: 

Gaussian elimination costs  
But for PDE? Let’s restrict to 

Poisson’s equation in the unit square with  
5-point discretization of the Laplace operator 
(at this stage we thus avoid the discussion of accuracy)  
Complexity metric: FLOPS 

With this: What is the cost of solving the discretized Poisson equation on a grid 
with 

… what is the best algorithm known today? 
… what is the answer for 3D? … or more general equations? 
… more advanced discretization techniques?  

In any case: I insist on the constant, multiplying the dominating term 
When the complexity is (almost) linear, the constant is the critical quantity 

Solvers for Extreme Scale Computing  -  Ulrich Ruede

<latexit sha1_base64="wVEFDg+2t5xoNoXXUCWsNvFWWcE="></latexit>

⇠ 2

3
n3 FLOPS

<latexit sha1_base64="rd1/DzIGn2z3idWLFL0vzGHeP6U="></latexit>n = nx ⇥ ny unknowns?



Part I - An introductory excursion to 
Earth Mantle Convection

TERRA NEO

TERRA 8Computational Science at Extreme Scale   -    Uli Ruede
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Simple Earth Mantle convection models: 
Stokes equation coupled with energy transport

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Solution of the Stokes equations

Boussinesq model for mantle convection problems

derived from the equations for balance of forces, conservation of
mass and energy:

�r · (2⌘✏(u)) +rp = ⇢(T )g,

r · u = 0,

@T

@t
+ u ·rT �r · (rT ) = �.

u velocity
p dynamic pressure
T temperature
⌫ viscosity of the material
✏(u) = 1

2 (ru+ (ru)T ) strain rate tensor
⇢ density
, �, g thermal conductivity,

heat sources, gravity vector

Gmeiner, Waluga, Stengel, Wohlmuth, UR: Performance and 
Scalability of Hierarchical Hybrid Multigrid Solvers for Stokes 
Systems, SIAM J. Scientific Comp., 2015.



Mantle Convection

driving force for plate tectonics 
mountain building and earthquakes 

Matrix-free multigrid for extreme scale   -    Uli Ruede

TERRA NEO

TERRA 

mantle has 1012 km3

inversion and UQ blow up cost

Why Exascale?

Why 

Why Mantle Convection?

implementation based on HYTEG 

scalable and fast

sustainable framework

Challenges

computer sciences: software design for exascale systems 

mathematics: HPC performance oriented metrics

geophysics: model complexity and uncertainty

bridging disciplines: integrated co-design

10

TERRA NEO

TERRA 

TERRA NEO

TERRA 
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HYTEG  - application 
Dissertation N. Kohl
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Hierarchical Hybrid Grids (HYTEG) - discretization
full video on terraneo.fau.de
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Geophysical in-silico experiment: dynamical topography

Global dynamical topography 
depending on different 
assumptions 
radial viscosity variations

Solvers for Extreme Scale Computing  -  Ulrich RuedeFigure 6: Surface dynamic topography for Case: A - assum-
ing an only radially varying viscosity; B - with the addition
of viscosity variations due to varying thickness of the litho-
sphere; C - with additional temperature-dependent viscosity
in the lower mantle.

topography for Case C is plotted, where additional
temperature-dependent viscosity variations were in-
cluded in the lower-most mantle. The only minor
di↵erence with respect to Case B, are the slight in-
crease of Pacific and African dynamic topography.1080

In Fig. 7 we plot the di↵erences in the surface dy-
namic topography of Cases B and C using Case A
as reference. In Case B, there is an increase in the
positive signal over southern Africa in western Zam-
bia. In the North-Atlantic there is an excess dy-1085

namic topography around Scandinavia and north-

western Africa. The same excess uplift is visible
in the Pacific region. The subsidence over North-
America and Mediterranean is amplified, while the
mid-ocean ridge related uplift is less in amplitude.1090

In Case C, however, di↵erences with respect to
Case B are minor.

Figure 7: Di↵erences in surface dynamic topography for
Cases B and C w.r.t. Case A.

Finally, Fig. 8 shows the spectral intensity of to-
pography at the surface (top) and the CMB (bot-
tom) for the three cases. At the CMB Case A and1095

B yield the same intensity at all spherical harmonic
degrees, expect for l = 2, 3 where the intensity is
reduced, though only marginally. In Case C the
spectral intensity of topography for l > 9 is signif-
icantly higher than in the other two cases. For the1100

surface topography, the situation is di↵erent. For
spherical degrees 9 < l < 25 all three cases produce
almost the same intensity. For l > 25 we observe
a slight intensity reduction in B and C, while for
l 6 9, Case A yields smaller intensities than the1105

other two cases. The pattern of intensity remains
the same, however.
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employ the continental lithospheric thickness model
TC1, [53]. Oceanic lithosphere is then modeled
by a half-space cooling model. As demonstrated
in Fig. 11, the thickness of the lithosphere ranges
from 20 km down to more than 350 km penetrating
the asthenospheric layer. That is, while in Case A
the lithosphere is a channel with a fixed thickness,
in Case B its actual shape varies between oceans
and continents. To account for this, we remove the
lithosphere layer from our model in Case A, and in-
stead prescribe lithosphere thickness via a 3D func-
tion �. The later is a scalar field ranging from 1
to 103, where we set �(x) = 103 for all points x

that are part of the lithosphere. Beneath the litho-
sphere the value smoothly decreases from 103 to 1,
as a result of a lateral spectral Gaussian filtering,
as shown in Fig. 11. Finally, we get

⌫B(x, T ) = �(x)

(
1/10 · 6.3713d3b rA 6 r

1 otherwise.

Case C: In our final test case, we include lateral
viscosity variations also in the lower mantle. In ad-
dition to the a priori radial profile from Case A,
lateral variations are inferred from an exponential
temperature dependence, consistent with a labora-
tory derived creep law [54]. In the upper mantle,
lateral variations remain identical to Case B. The
viscosity model now reads

⌫C(x, T ) = �(x)

8
<

:

1/10 · 6.3713d3b rA 6 r

e
�µLM (1/T�1/T0) otherwise

with radial reference temperature T0, �µLM = 5.75.
The value of �µLM is chosen specifically to yield
three orders of magnitude of variation in the lower
mantle. Both, T0 and T , are scaled by the max-1035

imum temperature value obtain form the conver-
sion of shear velocities, see above. The shape of the
three viscosity models is illustrated in Fig. 5.

The simulations are carried out on Hazel Hen
(Case A) and SuperMUC Phase 1 (B, C). For sim-1040

ulations on SuperMUC, the setup is as described in
Sec. 5, namely 1.1·1012 DoFs on 47 250 cores with a
global resolution of ⇠1.7 km. On Hazel Hen, we had
access to an even larger number of cores which al-
lowed us to run simulations with a global resolution1045

of less than 1.5 km (1.6 · 1012 DoFs) on 75 810 com-
pute cores. For post-processing and visualization
of the dynamic topographies, all results were inter-
polated to the same longitude-latitude grid. In all

Figure 5: Radial viscosity profiles for Cases A (red), B
(black-dashed), and C (black-dotted). The lateral variations
in Cases B and C are visualized by the min/max values in
each layer. In the upper mantle (um), the profiles of B and
C are identical (solid line). In the lower mantle (lm), the
dashed line shows the radial profile of Case B, and the dot-
ted min/max curves the temperature dependent variations
of Case C. Values are scaled by reference viscosity 1022 Pa s.

cases, free-slip boundary conditions were imposed1050

on surface and CMB.

The results of our simulations are shown in Fig. 6.
Fig. 6-A provides the surface dynamic topography
for Case A. Here, we assumed a purely depth-
dependent viscosity. We find positive topography1055

at the mid-ocean ridges in the Indian, Pacific and
Atlantic oceans, where seismic tomography images
warm asthenospheric upwellings. In the North-
Atlantic realm, over Iceland, the surface is also pos-
itively deflected, by ⇠ 1000m. The maximum pos-1060

itive dynamic topography is located above the Afar
region in Africa and the Pacific super-plume, both
with an amplitude of ⇠ 2000m. North and Central
America are negatively deflected by ⇠ 1000m in
correspondence with the ancient Farallon subduc-1065

tion system.

Fig. 6-B shows results for Case B, which in-
cludes lateral variations of viscosity due to litho-
spheric thicknesses. The main features are sim-
ilar to Case A, with di↵erences only in details.1070

The positive topography above Afar now extends
southwards covering most of southeastern Africa.
The amplitudes are also increased above the Pa-
cific superswell, and Northeastern Africa, as well
as Scandinavia. In Fig. 6-C, the surface dynamic1075

17

Weismüller, J., Gmeiner, B., Ghelichkhan, S., 
Huber, M., John, L., Wohlmuth, B., ... & Bunge, 
H. P. (2015). Fast asthenosphere motion in 
high-resolution global mantle flow models. 
Geophysical Research Letters, 42(18), 
7429-7435.
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Part II: The essence of 
Computational Science and Engineering (CSE)

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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What is it about?

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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Fig. 2 CSE cycle—from physical problem to model and algorithms to e�cient implementation in
simulation software with verification and validation driven by data—leading to new insight
in science and engineering.

weather or designing more energy-e�cient aircraft wings. Another example is the use
of simulation models to conduct systematic virtual experiments of exploding super-
novae: CSE technology serves as a virtual telescope reaching farther than any real
telescope, expanding human reach into outer space. And computational techniques
can equally well serve as a virtual microscope, being used to understand quantum
phenomena at scales so small that no physical microscope could resolve them.

CSE and the Data Revolution. The emergence and growing importance of mas-
sive data sets in many areas of science, technology, and society, in conjunction with
the availability of ever-increasing parallel computing power, are transforming the
world. Data-driven approaches enable novel ways of scientific discovery. Using massive
amounts of data and mathematical techniques to assimilate the data in computational
models o↵ers new ways of quantifying uncertainties in science and engineering and
thus helps make CSE truly predictive. At the same time, relying on new forms of
massive data, we can now use the scientific approach of quantitative, evidence-based
analysis to drive progress in many areas of society where qualitative forms of analy-
sis, understanding, and decision-making were the norm until recently. Here the CSE
paradigm contributes as a keystone technology to the data revolution, in synergy with
data science.

CSE Cycle. Many CSE problems can be characterized by a cycle that includes
mathematical modeling techniques (based on physical or other principles), simulation
techniques (such as discretizations of equations and scalable solvers), and analysis
techniques (data mining, data management, and visualization, as well as the analysis
of error, sensitivity, stability, and uncertainty)—all encapsulated in high-performance
scientific software. The CSE cycle is more than a sequential pipeline since it is con-
nected through multiple feedbacks, as illustrated in Figure 2. Models are revised and
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Part III: Supercomputers

Solvers for Extreme Scale Computing  -  Ulrich Ruede

SuperMUC-NG: 27 PFlops

SuperMUC-NG: Leibniz Supercomputing Center 
Garching/Munich

Frontier: 1.1 EFlops

Frontier: Oak Ridge National Laboratory, USA
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A personal review of computer evolution

We have come a long way!

Solvers for Extreme Scale Computing  -  Ulrich Ruede

mungen um Flugkörper beteiligt war. Robert Sauer (* 16.9.1898 Pom-
mersfelden, † 22.8.1970 München), der ab 1. Oktober 1948 als Ordentli-
cher Professor für Höhere Mathematik und Analytische Mechanik an der
Technischen Hochschule München lehrte, hatte ein Lehrbuch der Gasdy-
namik publiziert und hatte durch eigene Erfahrung beim Bau eines Ana-
logrechners bemerkt, daß diese für die Berechnung hyperbolischer parti-
eller Differentialgleichungen ungeeignet sind. Damit erklärt sich Sauers
Interesse an elektronischen Rechenmaschinen. ,, ... [Es] kam in ständig
wachsendem Maße eine rege Zusammenarbeit zwischen dem obengenann-
ten elektrotechnischen Institut und dem Mathematischen Institut — un-
ter Professor Dr. Robert Sauer — zustande. Wie immer, wuchs der Ap-
petit mit dem Essen. “ geht es in dem Artikel weiter.

Die PERM im Zustand von 1956 — bis Sommersemester 1974
in der Ausbildung eingesetzt, heute im Deutschen Museum

Durch Sauers Assistent Hermann L. Jordan (1922–1998), der 1948/1949
ebenfalls bei einem Studienaufenthalt in den USA elektronische Rechen-
anlagen kennengelernt hatte, wurden Unterlagen über den Whirlwind
zum Vorbild für die Programmgesteuerte Elektronische Rechenanlage
München, die PERM. ,,Während in den 30er und 40er Jahren des letz-
ten Jahrhunderts in Deutschland kaum Interesse an elektromechanischen
oder elektronischen Großrechenanlagen bestand, erreichten die USA, ge-
trieben vor allem durch das Militär, ein hohes Niveau. Dies gelang durch
gezielten Einsatz von Wissenschaftlern und Ingenieuren in Technologie,
Systemwissen und Anwendungen. Diese Kenntnisse fanden Niederschlag
unter anderem in den Veröffentlichungen der ‘Radiation Series’, verfügbar
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PERM: I did not experience this in action any more

schnelleren Anlage unabweisbar notwendig geworden, um die ständig ge-
stiegenen Anforderungen an Rechenzeit zu erfüllen. Im Herbst 1968 fiel
die Wahl nicht ohne Druck aus Bonn wieder auf ein deutsches Fabrikat.

Telefunken TR 440 (1970)

Herbst 1970: Inbetriebnahme der TR 440 im Neubau an der Ba-
rer Straße. Am 18. 12. 1968 wurde das Richtfest für das LRZ-Gebäudes,
Barer Straße 21, gefeiert, im Herbst 1970 war das Gebäude, dessen Ko-
sten (damaliger Preisstand) sich auf 6.6 Mio. DM beliefen, bezugsfertig.
Selten wurde im staatlichen Hochschulbau so zügig gearbeitet. Nach ei-
nem ersten Teilumzug im August 1970 fand ein zweiter im Februar 1971
statt.
Das Gebäude wurde auch gerade rechtzeitig fertig, um für die im Okto-
ber 1970 zur Lieferung anstehende Rechenanlage Telefunken TR 440 den
Probebetrieb aufzunehmen. Geplant war eine Doppel-Prozessor-Anlage,
die den Einstieg in Mehr-Prozessor-Anlagen vorbereiten sollte. Sie wurde
zunächst mit einem Prozessor geliefert und ging im Oktober 1971 in vol-
len Betrieb, nachdem stufenweise im Februar 1971 der Betrieb der Daten-
station im 1. Obergeschoß, im März der Konsolbetrieb nach Aufstellung
einer TR 86 S als Vor-Rechner aufgenommen wurde. Ab September 1972
stand dem LRZ sogar eine neue Doppelprozessoranlage zur Verfügung;
der Monoprozessor TR 440 wurde sodann als Rechner des Instituts für
Informatik der TU (,,Informatik-Rechner“) am LRZ weiterbetrieben.
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TR 440: Where I learnt about Gaussian elimination

CDC CYBER 170 (1985)

Juli/August 1986:
Lieferung der ersten CDC CYBER 180-990DP (E) mit 32 MB Hauptspei-
cher, Aufnahme des Benutzerbetriebs unter NOS 2 im November 1986.
Oktober/November 1986:
Lieferung weiterer Plattenspeicher für CDC CYBER 180-990DP und Auf-
nahme des Benutzerbetriebs unter dem neuen virtuellen Betriebssystem
NOS/VE.
Januar 1987:
Außerdienststellung der seit 1978 betriebenen CDC CYBER 175 (B),
Multi-Mainframe-Kopplung der beiden verbliebenen Maschinen CDC
CYBER 170-875MP (D) und CDC CYBER 180-990DP (E) unter NOS 2.
März/April 1987:
Hauptspeichererweiterung der CDC CYBER 180-990DP (E) auf 64 MB,
Abbau der CDC CYBER 170-875MP (D), die seit 1985 betrieben wurde.
Aufstellung der CDC CYBER 180-990DP (F) mit 64 MB und Aufnahme
des Benutzerbetriebes auf den unter NOS eng gekoppelten CDC CYBER-
Anlagen.
Mai 1987:
2. Hauptspeichererweiterung bei beiden CDC CYBER-Anlagen (E) und
(F) auf je 128 MB. (Aus CDC CYBER 990DP wird dadurch CDC CY-
BER 995E.)
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CDC 175: Eventually fast enough to do 2D Poisson

schen Hochschulen führten. Dazu wurde 1988 eine Erweiterung der Kli-
maanlage des Leibniz-Rechenzentrums erforderlich.
Die Aufstellung des Vektorrechners erfolgte wiederum in Stufen: Im Ok-
tober 1988 wurde eine Interimsmaschine CRAY X-MP/24 mit 2 Prozesso-
ren, 4 MWorten = 32 MByte Hauptspeicher geliefert und am 21. 11. 1988
dem Benutzerbetrieb übergeben. Diese Anlage wurde im Oktober 1989
gegen eine CRAY Y-MP 4/4 32 mit 4 Prozessoren, 32 MWorten ( = 256
MByte Hauptspeicher) ausgetauscht.
Eine feierliche Einweihung der CRAY fand am 26. 1. 1990 statt — sie
blieb vielen Teilnehmern in Erinnerung, weil F. L. Bauer, der Ständige
Sekretär, an diesem Tag bekanntgeben mußte, daß sich im LRZ kurz zu-
vor ein ,,Asbest-Unfall“ ereignet hatte. Das war der Anfang der Asbestsa-
nierung, einer achtjährigen Leidensgeschichte für das Personal, aber auch
einer abrupten Richtungsänderung für die weitere Planung.

CRAY Y-MP (1989)

Im April 1991 wurde der Hauptspeicher auf 64 MWorte = 512 MByte aus-
gebaut (neue Bezeichnung: CRAY Y-MP 4/4 64), im Dezember 1992 auf-
gerüstet auf 8 Prozessoren (neue Bezeichnung: CRAY Y-MP 8/8 64), im
Juli 1993 auf 128 MByte (neue Bezeichnung: CRAY Y-MP 8/8 128).
Eine Standleitung München-Erlangen mit 64 kbit/s wurde eingerichtet,
das Protokoll X.25 eingeführt.
Anfang 1990 wurde eine Studie zur Entwicklung des Leibniz-Rechenzen-
trums für die Jahre 1990 bis 1994 vorgelegt. Diese Studie sah einen
Stufenplan mit folgenden Schwerpunkten vor:
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Let’s first take a Look Back!

The Cray YMP. A dream for vector processing

Hitachi SR 8000 F1 (2000)

2002: Bode Nachfolger von Bauer im Direktorium. Friedrich L.
Bauer schied zum 1. 10. 2002 aus dem Direktorium des LRZ aus, nachdem
die Neubauplanung in Garching bis in die Details fortgeschritten war. Zu
seinem Nachfolger wurde Arndt Bode gewählt. [Christoph Zenger]

Dienste-Entwicklung am LRZ. Spätestens mit der Einführung des
Konzeptes der dezentralen Grundversorgung Anfang der 90er Jahre, dem
gleichzeitigen Aufbau des Münchener Wissenschaftsnetzes als eines selbst-
ständigen Systems (und nicht nur als Zubringernetz zu Rechnerressour-
cen) und der Entwicklung erster Internetdienste änderte sich auch das
Dienstleistungsspektrum des LRZ erheblich.
Stand früher der Betrieb von Rechnern im Vordergrund, gewannen im
Laufe der Zeit andere Herausforderungen an Bedeutung. Hier ist zunächst
einmal die Professionalisierung des IT-Service-Managements zu nennen.
Es war für das LRZ günstig, dass der Lehrstuhl Hegering zu den ersten
in Deutschland zählte, die sich wissenschaftlich mit Verfahren des Netz-,
System-, Anwendungs- und Dienstmanagements beschäftigten.
Schon 1990 wurde das Münchner Netzmanagement-Team (MNM-Team)
gegründet, das aus Wissenschaftlern von LRZ, TUM und LMU bestand.
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The Hitachi SR 8000: Only 2 of the kind worldwide 

Jugene: The scaling monster

The current #2
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The Top 5 Supercomputers

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Nominal Performance
Measured Performance

# cores:  
   degree of parallelism

Power consumption

Fastest Computer 
in Europe currently 
#5, HPC6 (Italy), 
477 PFlop/s
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We are used to 1000x improvement per decade 
It slows down, but for now seems to continue with 100x improvement per decade 
We have seen improvement of speed by factors of 

• 107 since 1993 and  
• 1014 since 1963 

Moore’s Law for the Hitchhikers of the Galaxy 
If my car had seen similar improvements since 1993,  
it would drive instead of 102 km/h with 109 km/h 

since the solar system has a diameter of 1010 km, we could reach Neptune for 
a summer holiday within approximately 5 hours. 

If my car had sped up by 1014 since 1963 it would drive at 1016 km/h 
since our home galaxy has a diameter of 1018 km we could tour the galaxy by 
driving some 100 hours

Solvers for Extreme Scale Computing  -  Ulrich Ruede

must ignore Einstein’s speed limit at 109 km/h

Moore’s Law: We are children of the golden age of computing!
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Part IVa: Hierarchical Hybrid 
Tetrahedral Grids for Finite Elements

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Bergen, B. K., & Hülsemann, F. (2004). Hierarchical hybrid grids: data structures and core algorithms for multigrid. 
Numerical linear algebra with applications, 11(2-3), 279-291. 
Bergen, B., Gradl, T., Hulsemann, F., & UR (2006). A massively parallel multigrid method for finite elements. Computing in 
science & engineering, 8(6), 56-62. 
Kohl, N., Thönnes, D., Drzisga, D., Bartuschat, D., UR (2019). The HyTeG finite-element software framework for scalable 
multigrid solvers. International Journal of Parallel, Emergent and Distributed Systems, 34(5), 477-496.

level 0 (no refinement) level 1 level 2
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HYTEG: A matrix-free architecture for FE

Structured refinement of an unstructured base mesh 
Geometrical Hierarchy: Volume, Face, Edge, Vertex 

Solvers for Extreme Scale Computing  -  Ulrich Ruede

In this article, we consider the Stokes system as model problem. Discretization
with finite-elements yields a linear system with saddle-point structure. Section 2
covers the discretization and introduces the parallel data structures of the matrix-
free implementation. After definition of the multigrid components in section 3, we
quantify the computational cost of the resulting FMG iteration in section 4. Finally,
in section 5, we present numerical benchmarks to find optimal solver configurations in
the sense of TME, and demonstrate the node-level performance as well as the parallel
scalability of the implementation.

2 Finite element discretization for the Stokes sys-
tem

As model problem we consider the constant-coe�cient Stokes system that describes
viscous fluid motion on a bounded, polyhedral domain ⌦ ⇢ R3, defined by

��u+rp = f (3)

r·u = 0

where u = (u1, u2, u3)> represents the vector-valued velocity field, p the scalar pres-
sure field, and f = (f1, f2, f3)> an external force acting on the fluid. We consider
Dirichlet, and natural Neumann outflow boundary conditions on @⌦ = @⌦D [ @⌦N

u = w on @⌦D,
@u

@n
= np on @⌦N

where n is the outward pointing normal at the boundary. If @⌦ = @⌦D, the pres-
sure is defined up to a constant and the Dirichlet boundary function w must satisfy
compatibility conditions [26]. We fix p to a mean value of 0 by setting

R
⌦ p dx = 0.

Let T0 denote an unstructured partitioning of the computational domain into
tetrahedral elements. Each of the elements in T0 is then successively and uniformly
refined according to [16], yielding a hierarchy of tetrahedral meshes T = {T`, ` =
0, ..., L}. The structured refinement of a single coarse grid tetrahedron is illustrated
in fig. 1. The mesh hierarchy is discussed in more detail in sections 2.1 and 2.2.

Figure 1: Uniform, structured refinement of a single tetrahedron of the unstructured mesh. From
left to right: initial tetrahedron, refinement level ` = 1, refinement level ` = 2.

We define the solution and test spaces H1
E

and H
1
E0

H
1
E
:= {u 2 H1(⌦)3 : u = w on @⌦D}, H

1
E0

:= {v 2 H1(⌦)3 : v = 0 on @⌦D},

and standard conforming finite element spaces V
`

0 ⇢ H
1
E0

, V`

E
⇢ H

1
E
, and Q

` ⇢
L2(⌦) defined by polynomial functions on each tetrahedron for each level ` of the
mesh hierarchy.

3



Hierarchical Hybrid Grids (HHG) and Multigrid (HYTEG)
Parallelize multigrid for tetrahedral finite elements 

partition domain 
parallelize all operations on all grids 
use clever data structures 
matrix free implementation  

Coarse grids 
agglomeration? 
sequential dependency in grid hierarchy 

Elliptic problems always require global communication 
and thus coarser grids for the global data transport

Scalable Multiphysics         -        Uli Ruede

TERRA NEO

TERRA 

Bey‘s Tetrahedral 
Refinement

B. Bergen, F. Hülsemann, UR, G. Wellein: „Is 1.7× 1010 unknowns the largest finite 
element system that can be solved today?“, SuperComputing,  2005. 
Gmeiner, UR, Stengel, Waluga, Wohlmuth: Towards Textbook Efficiency for Parallel 
Multigrid, Journal of Numerical Mathematics: Theory, Methods and Applications, 2015
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Remark about R. Blaheta’s work (1)
An essential result is the proof of the strengthened 
Cauchy-Bunyakowski-Schwarz inequality for linear 
triangular elements in 2D on HYTEG-like grids

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Axelsson, O., & Blaheta, R. (2004). Two simple derivations of 
universal bounds for the CBS inequality constant. Applications 
of Mathematics, 49, 57-72.

and u ∈ ÛE , v ∈ V̂E , where

ÛE = {v = (v1, v2) : vi ∈ UE for i = 1, 2},
V̂E = {v = (v1, v2) : vi ∈ VE for i = 1, 2}.

P1–P2 problem: Consider now a p-refinement, i.e., piecewise linear and quadratic
functions over the elements of TH . For each element E ∈ TH we consider the spaces

UE = {v ∈ C(E) : v ∈ P1},
Up

E = {v ∈ C(E) : v ∈ P2},
VE = {v ∈ Up

E : v(x) = 0 for all vertices x of E},
Up

E = UE ⊕ VE .

The P1–P2 problem for the anisotropic Laplacian is again to find a nontrivial
bound for the C.B.S. constant γE,2 such that

|aE(u, v)| ! γE,2

√
aE(u, u)

√
aE(v, v)

for all u ∈ UE , v ∈ VE and aE defined by (2.14). The corresponding P1–P2 problem
for the elasticity can be defined in the same way as before.

3. Universal estimates for the P1–P1 problem

For 2D problems, we will consider triangular elements and the h-refinement of the
type which is illustrated in Fig. 1. It means that now each coarse triangle is divided
into m2 smaller congruent triangles with edges which are m times shorter then the
edges of the original coarse triangle. Moreover, each edge of the small triangle is
parallel to some side of the original triangle. By the described division, we get from
the original coarse triangulation with the mesh parameter H a new triangulation
with the mesh parameter h = H/m.

p1 p2

p3

T1 T2

T6

T9

T7

T3
T4 T5

T8

Figure 1. Division of a triangle into m2 congruent ones, h = H/m, m = 3.

The aim of this section is to prove the following theorem:

61

Theorem 3.1. Consider the bilinear forms (2.14) and (2.15) corresponding re-
spectively to a general 2D anisotropic Laplacian or a general 2D anisotropic elasticity
operator on Ω. Further, let TH be a triangulation of Ω and assume that the problem
coefficients are constant on the coarse elements E ∈ TH . Assume also that each
element E ∈ TH is divided into m2 smaller congruent triangles in the described way.
Then

(3.1) γE,1 !
√

m2 − 1
m2

.

We will prove Theorem 1 in several sub-steps in the following subsections. First
we restrict our attention to a right angle isosceles reference triangle. For illustrative
purposes, we first prove a universal estimate in the case of the anisotropic Laplacian
and a division of the coarse triangles into four smaller ones, i.e., for m = 2. This
simple case is subsequently extended to m " 2 and both anisotropic Laplacian and
anisotropic elasticity. Finally, we show how to extend the estimates to the case of
general triangles by an affine mapping of these triangles to the reference one.

3.1. Universal estimate of γ for a reference triangle and m = 2.
As an illustration of our approach, we will start with the simplest case of a reference

triangleE with two axiparallel sides, see Fig. 2. The triangles are ordered as indicated
in Fig. 1. We denote

δi =
∂u

∂xi
, i = 1, 2, d(u) = δ = (δ1, δ2)T for u ∈ UE ,(3.2)

d(k)
i =

∂v

∂xi

∣∣∣
Tk

, i = 1, 2, d(v)|Tk = d(k) =
(
d(k)
1 , d(k)

2

)T
for v ∈ VE .(3.3)

Note that all quantities δi, d(k)
i are constants. We shall exploit certain relations

between d(k)
i . These relations are induced by the fact that v is zero at the vertices

(which gives d(2)
1 = −d(1)

1 and d(4)
2 = −d(1)

2 ) and the fact that some triangles share
an axiparallel side (which gives d(3)

1 = d(4)
1 and d(2)

2 = d(3)
2 ). These relations are

illustrated in Fig. 2.

✻

✲

x2

x1

d(1)
1 −d(1)

1

d(3)
1

d(3)
1

d(1)
2 d(2)

2

−d(1)
2

d(2)
2

Figure 2. The reference triangle and values of ∂v
∂xi
.
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Axelsson, O., & Blaheta, R. (2004). Two simple derivations of universal bounds 
for the CBS inequality constant. Applications of Mathematics, 49, 57-72.

4. An algebraic approach to the derivation the P1–P2 C.B.S. constant

Given a triangular element E with angles α, β, γ which has been regularly refined
in four subtriangles, the local assembled P1 and P2 matrices have the form (see
e.g. [5])

A(1)
H/2 =

1
2

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

2d −2c −2b 0 −a −a

−2c 2d −2a −b 0 −b

−2b −2a 2d −c −c 0
0 −b −c b + c 0 0
−a 0 −c 0 a + c 0
−a −b 0 0 0 a + b

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

which is the matrix assembled from the element matrix for the four subtriangles
corresponding to piecewise linear basis functions, and

A(2)
H =

1
6

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

8d −8c −8b 0 −4a −4a

−8c 8d −8a −4b 0 −4b

−8b −8a 8d −4c −4c 0
0 −4b −4c 3(b + c) c b

−4a 0 −4c c 3(a + c) a

−4a −4b 0 b a 3(a + b)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

which is the local finite element matrix corresponding to quadratic basis functions
on E. Here a = cotα, b = cotβ, c = cotγ and d = a + b + c. These matrices yield
the relation

(4.28) A(2)
H =

4
3
A(1)

H/2 − N,

where

(4.29) N =
1
3

[
0 0
0 A(1)

H

]

and

A(1)
H =

1
2

⎡

⎣
(b + c) −c −b

−c (a+c) −a

−b −a (a + b)

⎤

⎦ ,

the latter being the local finite element matrix for the vertex nodes of E, correspond-
ing to linear basis functions.

4.1. The relation

A(2)
H =

4
3
A(1)

H/2 −
1
3

[
0 0
0 A(1)

H

]
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Remark about R. Blaheta’s work (2)

This relates the matrices for quadratic and linear elements 
Axelsson and Blaheta use this to derive a strengthened Cauchy-Bunyakowski-
Schwarz inequality also for quadratic elements 
The same relation can also be used to prove the so-called tau-extrapolation within a 
multigrid/multilevel method, as, e.g. in 
          Rüde, U. (1992). The hierarchical basis extrapolation method. SISC 13(1), 307-318. 
            Jung, M., & Rüde, U. (1998). Implicit extrapolation methods for variable coefficient problems. 
            SISC 19(4), 1109-1124. 

Solvers for Extreme Scale Computing  -  Ulrich Ruede

linear elements 
on coarse grid

linear elements 
on fine grid

quadratic elements 
on coarse grid
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Remark about R. Blaheta’s work (3)

The article contains a concise description of the 3D refinement 
procedure (based e.g. on work of Kuhn and Bey) 
and proves the strengthened Cauchy-Schwarz inequalities in 3D 
This is essential to show a fast convergence of multigrid 
methods

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Blaheta, R. (2003). Nested tetrahedral grids and strengthened CBS 
inequality. Numerical linear algebra with applications, 10(7), 619-637.

NESTED TETRAHEDRAL GRIDS AND STRENGTHENED C.B.S. INEQUALITY 623
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Figure 2. Kuhn’s division of a cube into six tetrahedra.

This construction of nested tetrahedral grids can be generalized. Let us consider the Kuhn’s
division of the unit cube and consider the tetrahedron T̂ =K1 with vertices (0; 0; 0); (1; 0; 0);
(0; 1; 0); (0; 1; 1) as a reference tetrahedra. The uniform division of the unit cube into m3
smaller cubes and subsequently into 6m3 tetrahedra in the described way, generates the division
of the reference tetrahedra into m3 smaller tetrahedra, see Figure 3.
A general tetrahedra T with vertices Pi=(pi1; pi2; pi3) (i=1; : : : ; 4) can be viewed as an

a!ne transformation of the reference tetrahedra T̂ given by the a!ne mapping F : T̂→T;
F : x̂ "→ x,

x1 =p11 + (p21 − p11)x̂1 + (p31 − p11)x̂2 + (p41 − p31)x̂3 (7)

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:619–637
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Figure 3. The division of the reference tetrahedra into m3 smaller ones, m=2. The numbering of nodes
is consistent with the adopted co-ordinate system.

x2 =p12 + (p22 − p12)x̂1 + (p32 − p12)x̂2 + (p42 − p32)x̂3 (8)

x3 =p13 + (p23 − p13)x̂1 + (p33 − p13)x̂2 + (p43 − p33)x̂3 (9)

Via this mapping, the decomposition of T̂ into m3 tetrahedra induces a decomposition
Dm(T ) of the general tetrahedra T into m3 tetrahedra. As the Jacobian of F is constant, all
these tetrahedra have again the same volume. A further discussion of the properties of this
re!nement can be found in References [14, 15].
In the sequel, we shall consider this construction of nested tetrahedral grids, which starts

with a decomposition TH of a polyhedral domain " into coarse tetrahedra and continue
with the decomposition of each T ∈TH into m3 smaller tetrahedra in the described way, i.e.
Th=U{Dm(T ) :T ∈TH}.
Some geometrical properties of the division Dm(T̂ ) of the reference tetrahedron are described

in the following lemma.

Lemma 2.1
Consider the described division Dm(T̂ ) of the reference tetrahedron into m3 smaller tetrahedra,
m=2; 3; 4; 5. For each co-ordinate direction xk ; k=1; 2; 3, denote as Sk the set of segments,

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:619–637
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628 R. BLAHETA

Above P1 denotes the set of linear polynomials. Obviously,

Vh=VH ⊕ Ṽh (20)

Let us also consider the bilinear form a, which corresponds to an anisotropic Laplacian, i.e.

a(u; v)=
∫

!
⟨Dd(u); d(v)⟩ dx (21)

where u; v∈H 1(!); d(u)=grad(u); d(v)=grad(v); D is a matrix of coe"cients, which is
assumed to be symmetric and positive de#nite.
As it has been already mentioned in the introduction, for analysing of multi-grid methods,

recursive algebraic multi-level preconditioners or the composite grid methods, it is desirable
to know the constant ! from the corresponding C.B.S. inequality, i.e.

!= sup

{
a(u; v)√

a(u; u)
√
a(v; v)

: u∈VH ; u ̸=const:; v∈ Ṽh; v ̸=0
}

(22)

Theorem 3.1
Let TH ;Th be two divisions of the domain ! into tetrahedra, which are constructed in the
way described in Section 2. Let any tetrahedra T ∈TH is decomposed into m3 tetrahedra from
Th; m=2; 3; 4; 5. Assume also that D is constant on each tetrahedron T ∈TH . Then for any D
and any shape of tetrahedra from TH , the C.B.S. constant ! from (22) can be bounded by $!,

!6$!=

√
(m2 − 1)(m2 + 2)
m2(m2 + 1)

(23)

Proof
As it was described in many preceeding papers, see e.g. Reference [4] or [11], the C.B.S.
constant ! can be analysed locally. This means the following. Let T ∈Th and let

VH (T ) = {v∈C(T )∩P1} (24)

Vh(T ) = {v∈C(T ) : v|E ∈P1 ∀E ∈Th; E⊂T} (25)

Ṽh(T ) = {v∈Vh(T ) : v(x)=0 for all vertices x of T} (26)

aT (u; v)=
∫

T
⟨Dd(u); d(v)⟩ dx (27)

!T = sup

{
aT (u; v)√

aT (u; u)
√
aT (v; v)

: u∈VH (T ); u ̸=const:; v∈ Ṽh(T ); v ̸=0
}

(28)

Then by a direct application of the C.B.S. inequality, it is possible to show that

!6max{!T : T ∈TH} (29)

Now, we shall analyse !T̂ for the reference tetrahedra T̂ and its division into smaller
tetrahedra Tk ∈Dm(T̂ ); k=1; : : : ; m3, see Section 2.

Copyright ? 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 10:619–637
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Algorithms Matter!

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Energy per FLOP: 1nJ

Computer Generation gigascale: 109 terascale: 1012 petascale: 1015 exascale: 1018

problem size: DoF=N 106 109 1012 1015

Direct method: 1*N2 0.278 Wh 278 kWh 278 GWh 278 PWh

Krylov method: 100*N1.33 10 Ws 28 Wh 278 kWh 2.77 GWh

Full Multigrid: 200 N 0.2 Ws 0.056 Wh 56 Wh 56 kWh

TerraNeo prototype 
(est. for Juqueen) 0.13 Wh 30 Wh 27 kWh ?

Solution of Laplace equation 
in 3D wit N=n3 unkowns 
Direct methods: 

banded: ~n7 = N2.33 
nested dissection: ~n6 = N2 

Iterative Methods: 
Jacobi: ~50 n5 = 50 N1.66 

CG: ~100 n4 = 100 N1.33 

Full Multigrid: ~200 n3= 200 N



matrix-free multigrid with Uzawa 
smoother 
optimized for minimal memory 
consumption 

1013 Unknowns correspond to 80 
TByte for the solution vector 
Juqueen had ~450 TByte memory 
matrix free implementation essential

Extreme Scale Computing    -    Uli Rüde

TERRA NEO

TERRA 

Exploring the limits

typically appear in simulations for molecules, quantum mechanics, or geophysics. The initial mesh

T�2 consists of 240 tetrahedrons for the case of 5 nodes and 80 threads. The number of degrees of

freedoms on the coarse grid T0 grows from 9.0 · 103 to 4.1 · 107 by the weak scaling. We consider

the Stokes system with the Laplace-operator formulation. The relative accuracies for coarse grid

solver (PMINRES and CG algorithm) are set to 10�3 and 10�4, respectively. All other parameters

for the solver remain as previously described.

nodes threads DoFs iter time time w.c.g. time c.g. in %

5 80 2.7 · 109 10 685.88 678.77 1.04

40 640 2.1 · 1010 10 703.69 686.24 2.48

320 5 120 1.2 · 1011 10 741.86 709.88 4.31

2 560 40 960 1.7 · 1012 9 720.24 671.63 6.75

20 480 327 680 1.1 · 1013 9 776.09 681.91 12.14

Table 10: Weak scaling results with and without coarse grid for the spherical shell geometry.

Numerical results with up to 1013 degrees of freedom are presented in Tab. 10, where we observe

robustness with respect to the problem size and excellent scalability. Beside the time-to-solution

(time) we also present the time excluding the time necessary for the coarse grid (time w.c.g.) and

the total amount in % that is needed to solve the coarse grid. For this particular setup, this

fraction does not exceed 12%. Due to 8 refinement levels, instead of 7 previously, and the reduction

of threads per node from 32 to 16, longer computation times (time-to-solution) are expected,

compared to the results in Sec. 4.3. In order to evaluate the performance, we compute the factor

t nc n
�1, where t denotes the time-to-solution (including the coarse grid), nc the number of used

threads, and n the degrees of freedom. This factor is a measure for the compute time per degree of

freedom, weighted with the number of threads, under the assumption of perfect scalability. For

1.1 · 1013 DoFs, this factor takes the value of approx. 2.3 · 10�5 and for the case of 2.2 · 1012 DoFs

on the unit cube (Tab. 5) approx. 6.0 · 10�5, which is of the same order. Thus, in both scaling

experiments the time-to-solution for one DoF is comparable. The reason why the ratio is even

smaller for the extreme case of 1.1 · 1013 DoFs is the deeper multilevel hierarchy. Recall also that

the computational domain is di↵erent in both cases.

The computation of 1013 degrees of freedom is close to the limits that are given by the shared

memory of each node. By (8), we obtain a theoretical total memory consumption of 274.22 TB,

and on one node of 14.72 GB. Though 16 GB of shared memory per node is available, we employ

one further optimization step and do not allocate the right-hand side on the finest grid level. The

right-hand side vector is replaced by an assembly on-the-fly, i.e., the right-hand side values are

evaluated and integrated locally when needed. By applying this on-the-fly assembly, the theoretical

18

Gmeiner et al. 2016, A quantitative performance study for Stokes 
solvers at the extreme scale, Journal of Computational Science.

28



Ahuh = fh

rh = fh �Ahuh

rH = IH

h
rh

AHeH = rH

eh = Ih

H
eH

uh  uh + eh

Geometric Multigrid: to 1012 unknowns

Scalable Multiphysics         -        Uli Ruede

TERRA NEO

TERRA 

Relax on

Residual

Restrict

Correct

Solve

Interpolate

by recursion

… …

Goal: solve Ah uh = f h using a hierarchy of grids

Multigrid uses coarse grids 
to accomplish the inevitable global data 

exchange in the most efficient possible way

29

and beyond
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Algorithms for saddle point systems

Monolithic multigrid

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Axelsson, O., Blaheta, R., Byczanski, P., Karátson, J., & Ahmad, B. (2015). Preconditioners for regularized saddle 
point problems with an application for heterogeneous Darcy flow problems. Journal of Computational and Applied 
Mathematics, 280, 141-157. 
Blaheta, R., Luber, T., & Kružík, J. (2018). Schur Complement-Schwarz DD Preconditioners for Non-stationary 
Darcy Flow Problems. In High Performance Computing in Science and Engineering: Third International Conference, 
HPCSE 2017, Karolinka, Czech Republic, May 22–25, 2017, Revised Selected Papers 3 (pp. 59-72). Springer. 
Darrigrand, V., Dumitrasc, A., Kruse, C., & Rüde, U. (2023). Inexact inner–outer Golub–Kahan bidiagonalization 
method: A relaxation strategy. Numerical Linear Algebra with Applications, 30(5), e2484.

Gmeiner, B., Rüde, U., Stengel, H., Waluga, C., & Wohlmuth, B. (2015). Towards textbook efficiency for 
parallel multigrid. Numerical Mathematics: Theory, Methods and Applications, 8(1), 22-46. 
Drzisga, D., John, L., Rude, U., Wohlmuth, B., & Zulehner, W. (2018). On the analysis of block smoothers 
for saddle point problems. SIAM Journal on Matrix Analysis and Applications, 39(2), 932-960. 
Kohl, N., & Rüde, U. (2022). Textbook efficiency: massively parallel matrix-free multigrid for the Stokes 
system. SIAM Journal on Scientific Computing, 44(2), C124-C155.

Exploiting block structure and/or Schur complement formulation 

Benzi, M., Golub, G. H., & Liesen, J. (2005). Numerical solution of saddle point problems. Acta numerica, 14, 1-137. 
Rozložník, M. (2018). Saddle-point problems and their iterative solution. Basel: Birkhäuser.
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Part IVb: 

Automatic Code Generation 
Metaprogramming 

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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32Solvers for Extreme Scale Computing  -  Ulrich Ruede

kernel type 
matrix-free BLAS, 

relaxation, grid transfer, …

operator type 
Laplacian, divergence, 

gradient, …

assembly type 
constant-coefficient,  

on-the-fly, approximated, …

discretization 
P1, P2, …

domain shape 
tetrahedral, triangular, …

memory layout 
linear, colored, …

target platform 
X86, GPU, …

Combinatorial explosion leads to many different kernels and would require  
an enormous manual implementation and optimization effort!

automated 
code generation 

+ 
optimization

The HYTEG framework - code generation



• Symmetry (S)
• Inter-element vectorization (V)
• Loop invariants (I)
• Cubes loop strategy (C)
• Under-integration (U)
• Fused quadrature loops (fQ)
• Tabulation (T)

Generated optimizations

For the fastest operator:
Roofline analysis of 
optimization path

Optimization path

• Generate all combinations
• Determine the set of most 

effective optimizations

Optimization search
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Performance Analysis and Code Optimization

Solvers for Extreme Scale Computing  -  Ulrich Ruede

• Fritz Supercomputer at NHR@FAU 
• Matrix-vector multiplication (without communication)
• Single socket: Intel Xeon Platinum 8360Y (”Ice Lake”)
• 36 cores per socket
• LIKWID performance monitoring and benchmarking suite
 

Measurements



Provides option to transform 
the program 

Abstract syntax tree

For(…++elZ)

For(…++elY)

SrcDoF = ... DstDoF = ...

Tmp = ...

For(…++elX)

For(…++elZ)

Vec4 SrcDoF = ...

Tmp = ...

For(…++elX)For(…elX +=4 )

For(…++elY)

...

...

...

Transformed AST

Tailored 
optimizations

e.g. vectorization

Python Code Generator

Quadrature

Weak form

FE space

define performance 
properties 

Inputs to HOG

AVX2
Architecture
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HYTEG Operator Generator (HOG)

Solvers for Extreme Scale Computing  -  Ulrich Ruede



• Starting point: already compute-bound
• Series of opts reducing arithmetic intensity
• Compute-intense P2V becomes memory-bound with P2V_SVUI
• Cubes loop applicable -> more speed-up 
• 58x accumulated speed-up, 50% peak, 1.4 GDoF/s
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Optimization Path: P2V

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Operator P2V:  

• Symmetry (S)
• Inter-element vectorization (V)
• Loop invariants (I)
• Cubes loop strategy (C)
• Under-integration (U)
• Fused quadrature loops (fQ)
• Tabulation (T)



HYTEG: A for the curl-curl problem

linear Nédélec elements of the first kind 
65 280 curvilinear macro-tetrahedra 
total number of DoFs 1.6 x 1011

Solvers for Extreme Scale   -    Uli Rüde

TERRA NEO

TERRA 36

(a) coarse mesh and electric field lines of the so-
lution on the solid torus
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refinement level

k
~ek
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2

degrees of freedom

experiment

O(h2)

(b) L2-error grid convergence

Figure 13. Error convergence experiment using linear Nédélec elements of the first kind to solve the curl-curl
problem (6.3) on the toroidal solid, discretized with 65 280 curvilinear macro-tetrahedra. (6.3) is solved using
a matrix-free full multigrid (FMG) solver with 5 V(1,1) cycles per level. The total number of DoFs on the
finest level is approximately 1.6 · 1011.

6.2. Nédélec elements for the curl-curl problem

The (homogeneous) curl-curl problem

↵ curl curl ~u+ �~u = ~f in ⌦,

~u⇥ ~n = 0 on @⌦,
(6.3)

in three dimensions (d = 3), with given ~f , and ↵, � 2 R+, arises from Maxwell’s
equations [54]. Because standard piecewise Lagrangian elements are not suited for the
discretization of (6.3), linear Nédélec elements of the first kind [55] are used to approx-
imate ~u and ~f . Figure 11c illustrates the corresponding vector-valued edge elements.
Positioning the DoFs on the edges of the mesh enforces continuity of tangential com-
ponents while components normal to cell faces are discontinuous. This matches the
amount of continuity as required for conformity in H(curl) [56]. See [57] for imple-
mentation details.

We pick the solid torus as the domain ⌦ and discretize it with 65 280 macro-cells.
Because the triangulation is only a rough approximation of the curved geometry, a
curvilinear mapping is applied [30]. Figure 13a shows the resulting curvilinear mesh
on the coarsest level.

To evaluate the grid convergence of our discretization, we construct an analytic
solution with homogeneous tangential boundary conditions and determine the right-
hand-side ~f from it. For the sake of simplicity, we set ↵ = � = 1 in (6.3).

Numerically, we solve the PDE with a matrix-free FMG solver performing five V(1,1)
cycles on each refinement level. Inside the V-cycles, Hiptmair’s hybrid smoother [54]
is used. Due to the non-elliptic nature of (6.3), standard smoothers can only reduce
error components orthogonal to the nullspace of the curl-operator. Remaining error
components in the nullspace of the curl-operator must be handled separately to obtain
an e↵ective multigrid scheme. To that end, the residual remaining after smoothing is
determined, lifted to the space of scalar potentials, and discretized by P1 elements.
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Figure 14. Strong and weak scalability of the FMG solver for the curl-curl problem (6.3). (6.3) is solved on
the toroidal solid (65 280 curvilinear macro-tetrahedra) on di↵erent refinement levels and with varying number
of processes. The largest run comprises roughly 1.6 · 1011 DoFs and is executed on 32 768 cores.

Smoothing again in potential space removes the remaining oscillating error compo-
nents. The smoothed P1 vector must then be transformed back to the space of Nédélec
elements, where it is added to the current iterate. We choose Chebyshev smoothers of
order 2 [38,58] in both spaces. This means that one hybrid smoothing step requires in
total three matrix-vector products in the Nédélec space, two matrix-vector products
in P1, and two transfer operations between the spaces. Note that two additional P1

vectors must be allocated.
The system is solved up to refinement level 7, which comprises roughly 1.6 · 1011

DoFs on 32 768 processes. The numerical solution is compared against the known
analytic solution and the error is measured in the L2-norm. The L2-error is expected
to reduce quadratically [59, Theorem 5.8, Remark 18]. According to Figure 13b, our
convergence results agree with the theory.

For comparison, the same equation with jumping coe�cients has recently been
solved in [60] with an algebraic multigrid (AMG) preconditioned conjugate gradient
(CG) solver implemented in the ParELAG miniapplication [61] in MFEM [62]. The
authors scaled their system up to 1.4 · 109 DoFs on 4608 processes and report a total
solve time of around three minutes. Furthermore, they used a graded hexahedral mesh
containing distorted elements but no curvilinear transformation.

Next, we assess the strong and weak scalability of our solver. To that end, we solve
the same system on 32 768, 4096, 512, and 64 processes. This corresponds to 256, 32,
4, and 1 compute nodes, respectively. The results are summarized in Figure 14.

We examine strong scalability for two problem sizes: 2.5 ·109 DoFs (level 5) and 3.1 ·
108 DoFs (level 4). In the larger setup, when increasing the number of processes from
512 to 32 768, a parallel e�ciency of 39% is observed. In the smaller case, increasing the
processing cores from 64 to 4096 results in a high parallel e�ciency of 61%. Further,
solving the small problem (3.1 · 108 DoFs) with 32 768 processes only yields a parallel
e�ciency of 9%. This result is the expected strong scaling behavior, given that solving
the system with 4096 processes is a matter of a few seconds. Overall, better strong
scalability is mainly hindered by the runtime on the coarser levels, where the arithmetic
workload is very low compared to the amount of inter-process communication. Note
that only a few (< 10) DoFs are allocated per process on the coarsest grids in both
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total three matrix-vector products in the Nédélec space, two matrix-vector products
in P1, and two transfer operations between the spaces. Note that two additional P1

vectors must be allocated.
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DoFs on 32 768 processes. The numerical solution is compared against the known
analytic solution and the error is measured in the L2-norm. The L2-error is expected
to reduce quadratically [59, Theorem 5.8, Remark 18]. According to Figure 13b, our
convergence results agree with the theory.

For comparison, the same equation with jumping coe�cients has recently been
solved in [60] with an algebraic multigrid (AMG) preconditioned conjugate gradient
(CG) solver implemented in the ParELAG miniapplication [61] in MFEM [62]. The
authors scaled their system up to 1.4 · 109 DoFs on 4608 processes and report a total
solve time of around three minutes. Furthermore, they used a graded hexahedral mesh
containing distorted elements but no curvilinear transformation.

Next, we assess the strong and weak scalability of our solver. To that end, we solve
the same system on 32 768, 4096, 512, and 64 processes. This corresponds to 256, 32,
4, and 1 compute nodes, respectively. The results are summarized in Figure 14.

We examine strong scalability for two problem sizes: 2.5 ·109 DoFs (level 5) and 3.1 ·
108 DoFs (level 4). In the larger setup, when increasing the number of processes from
512 to 32 768, a parallel e�ciency of 39% is observed. In the smaller case, increasing the
processing cores from 64 to 4096 results in a high parallel e�ciency of 61%. Further,
solving the small problem (3.1 · 108 DoFs) with 32 768 processes only yields a parallel
e�ciency of 9%. This result is the expected strong scaling behavior, given that solving
the system with 4096 processes is a matter of a few seconds. Overall, better strong
scalability is mainly hindered by the runtime on the coarser levels, where the arithmetic
workload is very low compared to the amount of inter-process communication. Note
that only a few (< 10) DoFs are allocated per process on the coarsest grids in both
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Optimization Path: N1

• Vectorization: steep performance boost
• Loop invariants: arithmetic intensity decreases 
• Cubes loop: cache-locality improves, arithmetic intensity increases 
• 11x accumulated speed-up,  62% peak, >2GDoF/s

Operator N1:  



• Full Multigrid with Hiptmair’s 
hybrid smoother

• SuperMUC NG Phase 2
• 21 504 processes
• Solve 10^12 DoFs linear 

system in 50 seconds
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HYTEG: Scaling for the Stokes Problem
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Kohl, N., & Rüde, U. (2022). Textbook efficiency: massively parallel matrix-free multigrid for the Stokes system. SIAM Journal 
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Fig. 11. Weak and strong scaling of the FMG solver for the P2 � P1 with
(⌫pre, ⌫post, ⌫inc,, Â, ⇠) = (0, 2, 1, 1, Âf , 3). The largest run solves a Stokes system with approxi-
mately 3.6 · 1012 unknowns.

Extreme-scaling. Finally, we demonstrate strong and weak scaling results of the
FMG implementation for the P2 � P1 discretization. The experiments are conducted
again on the thin nodes of SuperMUC-NG. We run the same cube benchmark on
refinement level L = 7.

Figure 11 shows the wall time for the FMG solver for the P2 � P1 discretization,
and (⌫pre, ⌫post, ⌫inc,, Â, ⇠) = (0, 2, 1, 1, Âf , 3). A weak scaling of three configura-
tions is presented: 1.1 · 107, 2.3 · 107, and 4.6 · 107 unknowns per process on average.
For the latter scenario, the number of processes per node is reduced from 48 to
24.

We demonstrate scalability to all available 147,456 processes and, in the largest
scenario, solve a Stokes system with more than 3.6 · 1012 unknowns in about 90
seconds. The solution vector alone requires more than 28 TB of main memory. The
monolithic multigrid solver with inexact Uzawa relaxation is especially suited for large-
scale computations, as it can be implemented with only one additional temporary
vector, on top of the solution and right-hand side.

We emphasize that such extreme scalability can only be achieved with matrix-free
solvers, and careful choice and implementation of the corresponding algorithms and
data structures [32].

6. Conclusion. In this article we analyzed an HHG-based massively parallel
matrix-free multigrid solver for the Stokes equations with respect to the notion of
TME. We extended the HHG data structures to higher-order finite elements and
compared the numerical and computational performance of a stabilized equal-order
and a Taylor–Hood discretization. The operation count of the employed monolithic,
geometric multigrid solver was derived and used as a first model to evaluate its e�-
ciency with respect to TME. Regarding operation count as a metric, we achieve or are
close to TME for both evaluated discretizations and benchmark problems. In a series
of studies we then present the computational e�ciency of our implementation to iden-
tify and quantify the gaps toward achieving TME in massively parallel applications.
Finally we demonstrate extreme scalability of the multigrid solver to up to 147,456
parallel processes and systems with more than 3.6 · 1012 unknowns. This article may
serve as a basis for further analysis of the e�ciency of Stokes solvers, in particular for
the case of varying coe�cients and for coupled, possibly nonlinear applications.

C140 NILS KOHL AND ULRICH RÜDE
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Fig. 5. Domain and computed solution of the flow through a y-shaped junction.

5.1.2. Flow through a junction. As a second benchmark problem, we consider
a y-shaped junction that is slightly bent in the z-direction, with a single, sinusoidal
inflow and two natural outflow (Neumann) boundaries; cf. Figure 5. The domain
consists of 336 coarse grid tetrahedra that are successively refined. The relaxation
parameter ! is again determined by a parameter study and set to 0.3 and 0.4 for the
P1 � P1 and P2 � P1 discretizations, respectively.

Since no analytical solution is known, we consider asymptotical convergence rates
by comparison of computed solutions on di↵erent refinement levels as in [2]. Given
two approximations x̃

`
and x̃

`�1, ||x̃`
� I

`

`�1x̃`�1||0 is expected to converge at the
same rate as the discretization error for increasing `.

In Figure 6 we plot ||ũ
`
� I

`

`�1ũ`�1||0 for both discretizations, increasing re-
finement levels, and two di↵erent solver configurations. For each discretization, we
additionally show results for the algebraic solution, computed by reducing the resid-
ual to machine precision on each level (denoted by alg. exact). We observe that the
expected asymptotic order of convergence is not achieved, even for the exact solu-
tion of the linear system. However, the FMG solvers are able to reduce the error to
discretization accuracy for settings that reach TME or are at least close to TME.
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Textbook Multigrid Efficiency 

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Textbook e�ciency: massively parallel matrix-free
multigrid for the Stokes system

Nils Kohl∗ Ulrich Rüde∗†

Abstract

We employ textbook multigrid e�ciency (TME), as introduced by Achi

Brandt, to construct an asymptotically optimal monolithic multigrid solver for

the Stokes system. The geometric multigrid solver builds upon the concept

of hierarchical hybrid grids (HHG), which is extended to higher-order finite-

element discretizations, and a corresponding matrix-free implementation. The

computational cost of the full multigrid (FMG) iteration is quantified, and the

solver is applied to multiple benchmark problems. Through a parameter study,

we suggest configurations that achieve TME for both, stabilized equal-order,

and Taylor-Hood discretizations. The excellent node-level performance of the

relevant compute kernels is presented via a roofline analysis. Finally, we demon-

strate the weak and strong scalability to up to 147, 456 parallel processes and

solve Stokes systems with more than 3.6⇥ 10
12

(trillion) unknowns.

Key words multigrid, textbook e�ciency, hierarchical hybrid grids, parallel com-
puting, finite element method, Stokes problem

AMS subject classifications 65F10, 65N30, 65N55

1 Introduction

Textbook multigrid e�ciency (TME), a term coined by Achi Brandt in [18, 48], sug-
gests that an ideal multigrid algorithm should solve a discrete system with less than
10 times the computational work that is required to apply the corresponding operator.

The computational work W(M) required to employ a numerical method M , in
order to solve a linear system Ax = b, is conveniently expressed in multiples of a
work unit (WU). One WU amounts to the computational work W(A) required for
application of the considered linear operator, i. e.

1WU := W(A). (1)

Consequently, we achieve TME if we design a multigrid method MG, that solves
Ax = b, with

W(MG)

W(A)
< 10. (2)

We emphasize that TME is defined with respect to the underlying di↵erential equa-
tion. Solving the partial di↵erential equation (PDE) with optimal complexity is a

∗
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Textbook Multigrid Efficiency (TME)

„Textbook multigrid efficiency means solving a 
discrete PDE problem with a computational effort that 
is only a small (less than 10) multiple of the operation 
count associated with the discretized equations itself.“  
[Brandt, 98]

Scalable Multiphysics         -        Uli Ruede

TERRA NEO

TERRA 41

This is a programmatic claim - not a theorem. 
For which types of PDE is it achievable?
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Work unit (WU)
Linear system 
Work unit (WU) to apply operator: 

or perform one sweep of relaxation 
TME achieved, if work for MG solver(!) less than 10 WU: 

TME defined wrt. to underlying differential equation 
TME is (much!) more ambitious than asymptotic optimality 
or mesh independent convergence of an iterative solver 
TME requires to quantify the constant 

Hard to assess theoretically 
But systematic numerical studies possible 
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1 Introduction

Textbook multigrid e�ciency (TME), a term coined by Achi Brandt in [18, 48], sug-
gests that an ideal multigrid algorithm should solve a discrete system with less than
10 times the computational work that is required to apply the corresponding operator.

The computational work W(M) required to employ a numerical method M , in
order to solve a linear system Ax = b, is conveniently expressed in multiples of a
work unit (WU). One WU amounts to the computational work W(A) required for
application of the considered linear operator, i. e.

1WU := W(A). (1)

Consequently, we achieve TME if we design a multigrid method MG, that solves
Ax = b, with

W(MG)

W(A)
< 10. (2)

We emphasize that TME is defined with respect to the underlying di↵erential equa-
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Cost comparison for Stokes with stabilized P1-P1 vs. P2-P1

A WU for P2-P1 and for P1-P1 are roughly equivalent 
Velocity error after an FMG iteration with parameterization chosen to achieve 
minimal error

Scalable Multiphysics         -        Uli Ruede

TERRA NEO

TERRA 43

on refinement level `. The number of unknowns in the interior of a tetrahedron is
calculated using eq. (7) and table 1.

For the application of a stencil with n entries, we account n multiplications and
n� 1 additions. We approximate this with 2n operations for each stencil application.
Where necessary, the number of operations is then multiplied by three, accounting
for the three velocity components.

The computational costs for the application of the block operators of eq. (5) for
the P2 �P1 discretization on level ` are (cf. tables 1 and 2)

W(BP2�P1
`

) =

vel. components

z}|{
3 · ( 2|{z}

add + mul

·
stencil sizez}|{

65 ) · Ntet(2
` � 3)| {z }

inner unknowns

(12)

W(AP2�P1
`

) = 3 ·
�
(2 · 65) ·Ntet(2

` � 3) + (2 · 146) ·Ntet(2
` � 2) (13)

+(2 · 19) ·Ntet(2
` � 1)

�

W(CP2�P1
`

) = 0. (14)

The P1 � P1 finite-element discretization leads to a 15-point stencil in the interior
of a refined tetrahedron [30]. It corresponds to the vertex-centered stencil in fig. 3(a)
without the entries on the edges. The computational costs for the individual blocks
are therefore

W(AP1�P1
`

) = W(BP1�P1
`

) = 3 · (2 · 15) ·Ntet(2
` � 3) (15)

W(CP1�P1
`

) = (2 · 15) ·Ntet(2
` � 3). (16)

While W(B`) 6= W(B>
`
) because of boundary e↵ects, they asymptotically incur the

same cost, i. e. we approximate W(B`) ⇡ W(B>
`
).

The cost of an application of a block matrix is approximated with the sum of the
work for the application of the individual blocks. For A` of eq. (5) we set

W(A`) ⇡ W(A`) +W(B>
`
) +W(B`) +W(C`).

To set these numbers into perspective, we compare the cost of the application
of the Stokes operator discretized with P2 � P1 finite elements on level ` with the
cost of the operator application for the PSPG stabilized P1 � P1 discretization on
level ` + 1. As stated in section 2, the number of unknowns for a P2 finite-element
discretization on level ` equals the number of unknowns for a P1 discretization on
level ` + 1. However, in both formulations for the Stokes problem, the pressure is
discretized linearly. The asymptotic ratio of unknowns (P2�P1/P1�P1) for a level
ratio `/(`+ 1) is (cf. table 1)

lim
`!1

3 · (Ntet(2` � 3) + 6 ·Ntet(2` � 2) +Ntet(2` � 1)) +Ntet(2` � 3)

4 ·Ntet(2`+1 � 3)
=

25

32
.

The asymptotic, work ratios of the individual operator blocks of eq. (5) and the
Stokes operators are

lim
`!1

W(AP2�P1
`

)

W(AP1�P1
`+1 )

=
23

12
, lim

`!1

W(BP2�P1
`

)

W(BP1�P1
`+1 )

=
13

24
, lim

`!1

W(AP2�P1
`

)

W(AP1�P1
`+1 )

=
9

10
. (17)

Concluding, the work for the application of the two operators AP2�P1
`

and AP1�P1
`+1

is comparable.

4.2 Multigrid

It follows the estimation of the computational work of the FMG algorithm as listed
in algorithm 1.
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P1 �P1, L = 6, mins2Ŝ(W(FMG(s))), Ŝ := {s 2 S :  = 1 ^ �(uL)  �̂u ^ �(p
L
)  �̂p}

(�̂u, �̂p) (1.1, 2) (1.1, 5) (2, 10)

s (2, 3, 2, 1, Âs, 1) (3, 1, 3, 1, Âs, 1) (1, 0, 2, 1, Âs, 1)

W(FMG(s)) 10.77 9.55 3.97

�(uL) 1.10 1.10 1.62

�(p
L
) 1.51 2.91 8.52

P2 �P1, L = 5, mins2Ŝ(W(FMG(s))), Ŝ := {s 2 S :  = 1 ^ �(uL)  �̂u ^ �(p
L
)  �̂p}

(�̂u, �̂p) (1.1, 2) (1.1, 5) (2, 10)

s (1, 3, 2, 1, Âf , 3) (1, 2, 1, 1, Âf , 3) (0, 2, 1, 1, Âf , 3)

W(FMG(s)) 14.91 11.08 8.11

�(uL) 1.01 1.02 1.47

�(p
L
) 1.99 4.55 9.81

Table 3: Results for some parameterizations from the search space S, optimized towards minimal
work with fixed upper bounds for �(uL) and �(p

L
), and  = 1.
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Figure 4: Minimal achievable velocity error after an FMG iteration with parameterization s 2 S that
requires a maximum work of W , plotted for W 2 {0}[{1.5, 2, . . . , 12}. Precisely, mins2S̃(||e(ũL)||2)
with S̃ := {s 2 S : WD(FMG(s))  W}, and discretization D on level L.

iteration. For both discretizations, a looser bound to the pressure error significantly
reduces the required work. If only a very accurate velocity solution is of interest, very
e�cient parameterizations may be chosen. We note that no configuration could reduce
the pressure error so that �(p

L
)  1.4. Similar results for the P1 �P1 discretization

are presented and discussed in [31, 30].
Table 3 lacks a direct comparison of the e�ciency among the two discretizations.

Again, we are interested in solving the PDE, and not in the exact solution of the dis-
crete problem. To this end, the ratios �(u

`
) and �(p

`
) fail to express a discretization-

invariant, quantitative measure for accuracy of the computed solution. The ratio
eq. (17) suggests, that a similar amount of work is required to apply either AP2�P1

`
or

AP1�P1
`+1 . We compare therefore the error ||e(ũ

L
)||2 as defined in eq. (19) after apply-

ing the FMG iteration to solve eq. (5) with AL = AP2�P1
L

, L = 5, and AL = AP1�P1
L

with L = 6. In particular, we plot in fig. 4 the minimal velocity error ||e(ũ
L
)||2

that can be achieved with an FMG configuration that requires a certain maximum
amount of work W . For the considered example, the P1 �P1 discretization accuracy
on level L = 6 is reached even for really e�cient configurations of the FMG solver
when employing the P2 � P1 discretization on level L = 5. For example, a 10-fold
reduction of the low-order discretization error is achieved with WP2�P1(FMG) ⇡ 5.

5.1.2 Flow through a junction

As a second benchmark problem, we consider a y-shaped junction, that is slightly bent
in z-direction, with a single, sinusoidal inflow and two natural outflow (Neumann)

14
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With this let’s come back to:

What is the fastest solver for 
Poisson’s equation?

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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Algorithms Matter!

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Energy per FLOP: 1nJ

Computer Generation gigascale: 109 terascale: 1012 petascale: 1015 exascale: 1018

problem size: DoF=N 106 109 1012 1015

Direct method: 1*N2 0.278 Wh 278 kWh 278 GWh 278 PWh

Krylov method: 100*N1.33 10 Ws 28 Wh 278 kWh 2.77 GWh

Full Multigrid: 200 N 0.2 Ws 0.056 Wh 56 Wh 56 kWh

TerraNeo prototype 
(est. for Juqueen) 0.13 Wh 30 Wh 27 kWh ?

Solution of Laplace equation 
in 3D wit N=n3 unkowns 
Direct methods: 

banded: ~n7 = N2.33 
nested dissection: ~n6 = N2 

Iterative Methods: 
Jacobi: ~50 n5 = 50 N1.66 

CG: ~100 n4 = 100 N1.33 

Full Multigrid: ~200 n3= 200 N



References from the stone age of multigrid research
[ST]  Stüben, K., & Trottenberg, U. Multigrid methods: Fundamental algorithms, 
model problem analysis and applications, in vol. 960 of Lecture Notes in 
Mathematics. Springer Verlag, 1982 

This is in the proceedings of the 1st European conf on multigrid methods that was held in 
Köln in 1981.  
This volume also contains Brandt’s original „Multigrid Guide“. 

[Hac]  W. Hackbusch: Multi-grid methods and applications, 1985, Springer Berlin, 
ISBN 3-540-12761-5 

[Gri]  M. Griebel. Zur Lösung von Finite-Differenzen- und Finite-Element-
Gleichungen mittels der Hierarchischen Transformations-Mehrgitter-Methode. 
Technical Report, SFB Bericht 342/4/90 A, Institut für Informatik, TU München, 
1990 

This is the dissertation of the author, submitted and defended in 1989
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The three references

[ST] and [Hac] are easily accessible online, [Gri] I have as physical copy
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Work estimates from [ST] for 5-pt discretization of Poisson’s eq 
2-grid-method with red-black Gauss-Seidel smoothers
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p (Iv1£) < 0.081

110

(£ = 1,2, ... ).

Proof: The estimate in (8.16) follows by a recursive estimation analogous to the one
used in Corollary 4.4 but now applied to (8.15). One only has to observe that

k+1 kII Bk lis· IIBk+11Is :O: 1 (k=1,2, ... ) where

Bk\l .- Sblack Ak I .
k k+1 G( rI )

k+1

This estimate can be verified by use of the Fourier representations of
k

Bk+1•

and

o

(8.17)

8.3.

Remarks: (1) If we replace the FW operator used above by the operator of half weight�

ing (HW), i. e .

q 1r
we obtain a method which is still more efficient than the one using FW. For the cor-
responding two-grid operator we can make a similar analysis with respect to
p* and as above. We do not give the details of the corresponding analysis here,
but show the most important values in Table 8.1 of the next section. (See also Figu-
re 8.2: This Figure corresponds to Figure 8.1 and it shows how the function F in
(8.13) changes, if the FW operator used there is replaced by the HW operator.) The
FORTRAN program listed in the appendix is the MG version corresponding to this two-
grid method.

(2) In contrast to the HW operator, the operator of straight injection (INJ, see
(3.41)) does not lead to a reasonable two-grid method here. This follows immediately
from the observation that the defect after one RB step is zero at all black points
and nonzero otherwise.

8.2 Further results for Poisson's equation

In this section, we give some more (h,2h)-results on Poisson's equation with
Dirichlet boundary conditions on rectangular domains. As before, we restrict ourselves
to the case of square grids h=h =h . For the case of non-square grids, see Section

xl x2

The first Table 8.1a recalls results on and p* already given in Sections
7.5 and 8.1. In addition, corresponding convergence factors are given for the case
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that the FW operator (3.3) is replaced by the HW operator (B.17). One can see that
the use of the HW operator (for leads to a method which is both more rapidly
convergent and cheaper. In the table, the operation count is given in terms of

(cf. Section 4.4). (Details on the operation count of the single MG components
are given in Table B.1c.) Using the efficiency measure (4.26), (4.27) (and counting
additions and multiplications weighted equally), we compute from Table 8.1a that the
optimal values v for FW and HW are given by v=2 and v=3, respectively.

Remark: Note that after one RB relaxation step the defect is zero at all black points.
This means that the fine-to-coarse transfers become fairly simple. In particular, the
application of the HW operator simply means that residuals are transfered from the
finer to the coarser grid by multiplying them by a factor of 0.5. (This kind of trans-
fer operator is also called half injection (HI) in the following.) Similarly, the per-
formance of the coarse-to-fine transfer is simplified if it is followed by one step
of RB relaxation: interpolation then has to be carried out explicitly only at black
points.

Table B.1b shows the quantities and for the respective methods. In
order to obtain values less than one for all these quantities, we see that one should
choose neither v 1=0 nor v2=0. As for the optimal v-values mentioned above, one
should choose v1=1, v2=1 and v1=2, v2=1 in case of FW and HW, respectively, in or-
der to obtain the smallest norm values.

Remark: For v1=0 and HW, we see from the table that The reason for this
can easily be seen by a similar consideration as for Jacobi's method in connection
with the INJ operator (cf. (3.43)). In contrast to Jacobi's method, this effect va-
nishes here if A similar behavior does not occur in connection with the FW
restriction operator; this is due to the fact that the FW operator acts like a "fil-
ter": High frequencies are essentially damped by the FW operator, more precisely, we
have for Ci;t (0,0) (cf. (7.33), (7.34))

q(eCi
) = 0(leI 2) (lei -+ 0). (8.18)

: FW : HW

(It)v * # Add # Mult * # Add # Multv p p

1 0.250 0.250 6.75 2.25 0.500 5.5 1. 75
2 0.063 10.074 9.75 3.25 I 0.125 8.5 2.75
3 0.034 0.053 12.75 4.25 I 0.034 11.5 3.75 I
4 0.025 0.041 15.75 5.25 0.025 14.5 4.75

Table 8.1a: y*, p* and computational work in case of smoothing by RB relaxa-
tion (for 5-point Laplace discretization)

Half-weighting  
restriction (HW)

and

96

* v/ 2v 1 I 2v-l I(v) Isup {max {IAOO- (1-AOO)I/2, AlO (l-AlO) /2} lelO>1T/2} (7.62)

(E ..,. 0)

(E ..,. 00).
(7.63)

Thus RB relaxation has, with respect to x2-coarsening and for small E, the same
smoothing properties as in Example (1) if (For v=l or 2 they are even bet-
ter.) For large E. however, RB cannot be used in connection with x2-coarsening:
Then xl-coarsening has to be used instead. This result is in full accordance with
the heuristic explanation given in (2).

(4) We have seen above that - for the anisotropic model equation with E considerab-
ly different from 1 - RB has good smoothing properties only if it is combined with
semi-coarsening. (In fact, this is true for any pointwise relaxation method by the
same heuristic argument which was given in Example (2).) In order to use standard
coarsening, the smoothing process has to be changed: One can use, for instance, ZEBRA
relaxation. The matrix representation of ZEBRA relaxation can be computed from Table
7.2 (also see (7.45)). Let us consider x2-ZEBRA. With

(7.64)

one obtains the same formula as (7.58) with AlO replaced by All and by that

(E ..,. 0)

(E ..,. 00).
(7.65)

In particular, x2-ZEBRA has, in connection with standard coarsening and for small E,

the same good smoothing properties as RB had in connection with x2-coarsening (7.63).
For large E, however, x2-ZEBRA is not suitable: xl-ZEBRA has to be used instead.
If one smoothing step is defined by one step of alternating ZEBRA, one can show that
this kind of a smoother has very good smoothing properties, independent of the size
of E. Some explicit values are given in Table 7.4 (also see Table 8.4b). In the
judgement of alternating ZEBRA one has, of course, to take into account that this
smoother needs twice the work per step as one single ZEBRA step.

We want to make one final remark on coarsening by quadrupling h. This kind of
coarsening leads to multigrid algorithms which are (slightly) cheaper per cycle than
corresponding ones obtained by, for example, standard coarsening (cf. (4.24)). On
the other hand, the smoothing factors shown in Table 7.4 indicate that this saving
of computational work does not pay: the smoothing factors which correspond to coarse-
ning by quadrupling h are much worse than those which correspond to standard co-
arsening.

smoothing factor
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Each of the model problems represents a considerably larger class of more general
"standard" problems (with variable coefficients, on more general domains etc.) to
which the quantitative theoretical results obtained for the corresponding model prob�
lem carryover in practice. This "stable behavior" of multigrid methods is a general
experience familiar to multi grid experts and has been demonstrated by a great number
of systematical experiments. It is because of this behavior that the model problem
analysis becomes really worthwhile for practical purposes.

The above behavior is heuristically explained by the fact that the spectral pro�
perties of by which the two­grid convergence behavior is determined, are "ro�
bust" with respect to small changes of a given model problem (for example, with re�
spect to changes of Lh or the domain). In particular, the influence of a given re�
laxation technique is nearly the same for neighboring problems; this is mainly due
to the local nature of relaxation processes.

8.1 Analytic results for an efficient two­grid method

We consider an (h,2h) two­grid method for model problem (P) which is very simi�
lar to the sample method treated in Chapter 3. The only difference is that now RB
relaxation (with relaxation parameter w=l) is used instead of Jacobi w­relaxation.
This small change of the algorithm will prove to be essential for the resulting ef�
ficiency. We obtain for the asymptotic convergence factor p*(v)=sup
h*=1/4:

Theorem 8.1: Let

(8.3)

where Lh, L2h are defined as in Section 3.1 and Sh characterizes one
complete step of RB relaxation (cf. Section 7.3). Then we have for v=v1+v2

In particular,

1/4

1 ( v )v+1
"2V V+I

(v 1)

(v ;> 2).

(8.4)

p*(2) = 2/27 = 0.074 •.. , 0.0521 .. ; vp*(v) + 1/2e (v + 00). (8.5)

Remark: We obtain the same result on p* if Poisson's equation is considered on a
rectangular domain (with h hx ) rather than on a square. The necessary changes

xl 2
in the proof below are obvious.

Asymptotic 2-grid 
convergence factor

Once the dust has 
been wiped off, 

this is still 
healthy, good, 
solid numerics
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injection (HI, see Section 8.1) and linear interpolation, respectively.

- Structure of cycles: Alternatively, V- or W-cycles (see Section 4.1) may be used.

Figure 10.1: "Reasonable" coarsest grids

All following quantitative results refer to Poisson's equation and the MG01 ver-
sion described above with

(10.2)

If4"denotes the number of grid points of nh, the total computational work for one
iteration step of the corresponding method is less than

15JY additions, 5 JY multiplications (for V-cycles),

23JY additions, 7.5JY multiplications (for W-cycles),
(10.3)

neglecting lower order terms. These numbers are independent of the shape of the
domain.

Table 10.1 shows some numerically calculated asymptotic convergence factors of
the multigrid iteration (for both V- and W-cycles) for several domains. All domains
are comparable in size with the unit square. The convergence factors have been com-
puted by a v. Mises vector iteration.

We recall that on rectangular domains for h =hx the corresponding asymptotic
xl 2

two-grid convergence factor is given by p*(3) 0.034 (see Section 8.2). As far
as W-cycles (y=2) are concerned, Table 10.1 shows that the multigrid convergence
factors (for h=1/128) are nearly the same as p*. This is also true for general
domains, as long as there are no reentrant corners. The worst convergence factor,
namely 0.097 instead of can be observed for the domain with a cut. Here
a singular behavior like is typical for the solution u(x) near the singular
point (where R denotes the distance of x to the singular point). Clearly, for
such problems Poisson's equation on a rectangle is no longer a model case. Never-
theless, the W-cycle convergence turns out to be very satisfactory even in such
cases. We point out that the given convergence factors remain essentially unchanged

V(2,1)-cycle: 20    Flops/unknown  
W(2,1)-cycle 30.5 Flops/unknown   



… and if we use full multigrid (FMG)?

Summarizing: We should be solving the 2D Poisson equation 
to discretization error accuracy 
with 30 Flops per unknown!  
in the model case, FMG-V(2,1) cycles are enough to 
achieve asymptotic optimality
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for respective reentrant corners. Here denote polar coordinates with respect
to the singular point; an is the inner angle of the domain at this point (see Ta�
ble 10.2).

As we have seen in Table 10.1, the convergence factors of the multigrid iteration
deteriorate with increasing a for the domains with reentrant corners (1 < a 2).
The question arises, whether the corresponding convergence speed is still sufficient
for the satisfactory performance of FMG (cf. the influence of nr in the estimation
(6.10)). For this, one should notice that the discretization error becomes larger
for increasing a also. This means that the value of K1 in (6.7) is smaller than
2 in these cases. More precisely, the following estimate is valid [66J: For any
1 a 2 and any s>o there exists a constant C such that

2 2s
2 2s ­ 1. + O(ha ) ifR fixeds

­ I C ha R a 1 (10.4)s
O(ha ) if R = O(h).

Therefore, the loss of MG convergence speed is ­ so to say ­ compensated by a loss
of discretization accuracy. The errors given in Table 10.2 show indeed that the
main objective of the FMG method, namely to obtain approximate solutions uh with
II uh ­ uh 11 2 II uh ­ u 11 2, is achieved for all examples considered. The same is
true for highly oscillatory solutions, see Table 10.3.

All results in Tables 10.2 and 10.3 refer to W­cycles. We have computed corre�
sponding errors II uh ­ uh 11 2 for V­cycles also (maintaining r = 1). The ratio
II uh ­ uh 11 2 / II uh ­ u 11 2 is larger then, but in all cases still 1. This means,
that V­cycles may also be employed in the cases considered.

The total computational work of MG01 in the FMG version (r=l) is less than

32.5JY additions, multiplications (if W­cycles are used)

22.ff additi ons, 8Jf multiplications (if V­cycles are used),
(10.5)

(neglecting lower order terms), where Jr is the number of grid points on the finest
grid. These numbers are independent of the shape of the domain. In particular, they
are the same as for a corresponding special program for rectangular domains. Concer�
ning the real computing times, this special program is, of course, faster than MG01
(for a given reasonableJr), as in MG01 additional work has to be performed due to
the more complicated grid structure. (As for computing times concerning programs on
rectangular domains, see MG00 [36J.)



So, what is the cost of solving the discrete Poisson equation?
What is the best constant published? 

For Poisson 2D, second order: 
#Flops ~ 30 n          (Stüben, 1982) 

assume computer with 1 PetaFLOPS,  n=108  
expected time to solution: Poisson 2D 
3*10-6 sec (microseconds!) 

assume computer with 1 ExaFLOPS,  n=1012  
expected time to solution: Poisson 2D 
30*10-6 sec (30 micro-seconds!) 

standard computational practice in 2024 misses this by 
several orders of magnitude! 
Why this huge gap between theory and practice? Do we need a failure analysis? 
Related questions: 

Cost of complex discretizations? 
Has the deflation of computational cost lured us into mis-developments? 

Extreme Resilient Multigrid    -    Uli Rüde
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6.5 billion unknowns 
10000 time steps 

compute time: 7 days @ 288 cores 

Intermediate Conclusion and Outlook

Multigrid scales!

HHG (since 2000): 
• prototype implementation, reaching 1013 DOF 
• concepts are suitable and efficient 
• limited to linear elements 

HYTEG (since 2018): 
• sustainable, flexible software architecture 
• implements core concepts of HHG 
• advanced discretizations 
• What about GPUs?

Links: 
• terraneo.fau.de 
• pypi.org/project/pystencils
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Part V: waLberla 

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Feichtinger, C., Donath, S., Köstler, H., Götz, J., & Rüde, U. (2011). WaLBerla: HPC software design for computational 
engineering simulations. Journal of Computational Science, 2(2), 105-112. 
Bauer, M., Eibl, S., Godenschwager, C., Kohl, N., Kuron, M., Rettinger, C., ... & Rüde, U. (2021). waLBerla: A block-structured 
high-performance framework for multiphysics simulations. Computers & Mathematics with Applications, 81, 478-501.
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Eulerian: Lattice-Boltzmann-Method
Discretization in squares or cubes (cells) 
Common examples for particle distribution functions 
(PDF) 

in 2D: 9 numbers (2DQ9) 
in 3D: D3Q19 (alternatives D3Q27, etc)

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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The stream step

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Move PDFs 
into neighboring cells

Non-local part, 
Linear propagation to neighbors 

(stream step)

Local part, 
Non-linear operator, 

(collide step)
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The collide step

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Compute new PDFs modeling molecular collisions
Most collision operators can be expressed as

Equilibrium function: non-linear, 
depending on the conserved moments   ,   , and   .  
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The Lattice Boltzmann Algorithm

Solvers for Extreme Scale Computing  -  Ulrich Ruede



Framework based on domain 
partitioning 

Block structured grids  
(good for vectorization, 
GPUs) 
Lagrangian co-simulation  
(fluid-structure interaction)  
Forest of octrees  
for load balancing 

Hybrid parallelization 
Automatic program generation 

DSL Pystencils for stencil 
codes 
DSL LBMpy for Lattice 
Boltzmann

waLBerla exascale SW structure

58Simulation at extreme scale  -    Uli Ruede

static load balancing

allocation of block data (→ 
grids)

static block-level refinement 
(→ forest of octrees)

DISK

DISK

separation of domain 
partitioning 

from simulation (optional)

compact (KiB/MiB) 
binary 
MPI IO
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waLBerla concepts
LBM based multiphysics framework 

• not an application software 
• not a library 
• But: a toolbox to support the construction of applications 

Design goals 
• scalability 
• node level efficiency 
• performance portability for a wide range of architectures 

Block structured meshes 
Coupling functionality 

• Eulerian: LBM (FV, FE) 
• Lagrangian: Particles

Solvers for Extreme Scale Computing  -  Ulrich Ruede



Adaptive Mesh Refinement and 
Load Balancing

60Simulation at extreme scale  -    Uli Ruede

Schornbaum, F., UR (2016). Massively Parallel Algorithms for the Lattice Boltzmann 
Method on Nonuniform Grids. SIAM Journal on Scientific Computing, 38(2), C96-
C126. 
Schornbaum, F., UR (2018). Extreme-scale block-structured adaptive mesh 
refinement. SIAM Journal on Scientific Computing, 40(3), C358-C387.
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EuroHPC consortium including Airbus, FAU, IT4I Ostrava, 
CS Group, and CERFACS 
LBM for aerodynamics/aeroacoustics 
Up to 10 refinement levels 
Scaling up to 65000 cores 
1.3 x 109 cells 
Resolution of 0.25 mm around landing gear

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Lagoon 10 Refinement levels (small blocks)

• Domain Size 40 x 20 x 20 m

• Block Size 8 x 8 x 8 cells

• Blocks for all runs 202 218 -> 149 012 blocks on the finest level

• 103 535 616 Cells

• Resolution 0.0005 m around the landing gear

• 62 GB of total memory for LBM data

10
Block structure of complete domain (x-y slice) Block structure with zoom on landing gear (x-y slice)

Lagoon 10 Refinement levels (small blocks)

• Scaling from 128 to 32 768 cores

• Strong scaling efficiency of ~ 99 %

• On 32 768 cores we still reach 1.7 MLUPs per core

• Note: Domain is so small it fits completely in L3 cache -> explains over scaling

• Load imbalance much better (at least 5 fine blocks per core)

12

Lagoon 10 Refinement levels (large blocks)

8

Scaling efficiency of ~ 64% 
because of load imbalance 
(67 212 fine blocks)

6.1 seconds per 
coarse step

-> 7.2^11 fine cells 
updated every ~6.1
seconds



WP2 – Scaling to 50k

Consortium meeting / 2023-01-02

Markus Holzer
Gabriel Staffelbach

We are VSB - Technical University of
Ostrava

VSB – Technical University of Ostrava has been connecting technical, economic,

natural sciences and artistic disciplines in modern study programmes for more than

175 years responding to the real problems of the present.

We carry out basic and applied research at the highest level. Thanks to tradition and

cooperation with industry as well as many domestic and foreign universities in a

wide range of sectors,

we provide innovative solutions in a number of fields and the certainty of

employment to our graduates.

Our faculties and research centres
Faculty of Mining and Geology

Faculty of Materials Science and

Technology

Faculty of Mechanical Engineering

Faculty of Economics

Faculty of Electrical Engineering and

Computer Science

Faculty of Civil Engineering

Faculty of Safety Engineering

IT4Innovations National

Supercomputing Center

 InNET  ČESKY 

Study Alumni Research Media
Partnership University

!

Strategic projects and alliances

News

Centre for Energy and Environmental

Technologies

62

Test case of counter rotating rotor 
Partially saturated cells (PSM) method for moving 
boundaries/geometry 
realistic Re-number still problematic 
Adaptive refinement in parallel under development 
(refine/coarsen)

Solvers for Extreme Scale Computing  -  Ulrich Ruede

Large-Scale Simulations of Fully Resolved Complex Moving Geometries with the Lattice Boltzmann Method 8

(a) Scenario A: Geometry
rotating over full domain

(b) Scenario B: Geometry rotating in
small part of domain

FIG. 9: Block structure with 128 blocks for CPU node level
performance on LUMI-C, 64³ cells per block

FIG. 10: Node level performance of PSM vs LBM on 2x
AMD EPYC 7763 CPUs on LUMI-C with 128 blocks and

64³ cells per block. Scenario A and B are visualized in
Figure 9.

which is about the extra memory access of reading the fraction
field and the solid object velocity field in Equation 4.

Lastly, we look at the performance of the PSM with an ac-
tual rotating geometry. The rotor in Scenario A and B is ro-
tating clockwise around its center. The rotation is dealt with
by building a new solid volume fraction field B(x, t) from the
geometry field every time step as explained in section III. As
the geometry field is created in a pre-processing step, only the
interpolation of the geometry field to the solid volume frac-
tion field B(x, t) is performance-relevant. Here, we tested two
super-sampling factors, s = 0 and s = 1, which should lead to
a different workload. In Figure 10 we present, that the han-
dling of the rotation (interpolation) kernel has only a minor
influence on the overall performance of the simulation. For
Scenario A, which is performance wise the worst case sce-
nario, because the rotating rotor covers a large portion of the
domain, the handling of the rotation is reducing the perfor-
mance for only 7% for the greater super-sampling factor of
s = 1. For Scenario B and s = 1, the result is even better,
here the handling of the rotation takes less than 3% of the
run time. Further, we observe that the super-sampling-factor
seams to have a negligible impact in the performance of the
rotation handling. For an industrial application such as the
CROR in Figure 5, the domain setup is close to scenario B,
therefore, the performance loss because of the rotation kernel
is expected to be below 3% of the run time.

FIG. 11: Node level performance of PSM vs LBM on 4
NVIDIA A100 GPUs on JUWELS-Booster with 1 block per

GPU and 256³ cells per block. Scenario A and B are
visualized in Figure 9.

For the GPU node-level performance, we studied the same
four cases as for the CPU node lever performance, but this
time on one JUWELS-Booster node (Alvarez 2021), which
consists of four NVIDIA A100 40GB GPUs. We decomposed
the domain into four blocks with 256³ cells per block, so that
one GPU handles one block and the GPU is fully utilized.
The node level performance results are presented in Figure 11.
Again, we introduce the LBM bandwidth roofline to get an es-
timation for the theoretically maximum performance for our
LBM kernel. It is computed by the measured bandwidth of
the four GPUs, which is 4 ·1366 GB/s, divided by the number
of memory accesses to end up with a maximum performance
of 18092 MLUPS. The LBM kernel for Scenario B with a
low number of boundary cells reaches 16916 MLUPS, which
is over 93 % of the maximum achievable performance. The
same code for Scenario A is 5% slower, which is again be-
cause of the higher number of boundary cells in the domain.

For the PSM kernel without rotation, we observe the same
performance as for the LBM kernel for Scenario B, and even
a speed-up for Scenario B. The higher number of boundary
cells seems to have no effect on the superior performance of
the PSM code.

The handling of the rotation of the geometry shows a to
the CPU results comparable impact on the performance, with
10% performance loss for Scenario A and 8% performance
loss for Scenario B. Again, a higher super-sampling factor
seems not to have additional costs in terms of MLUPS.

We conclude, that we managed to implement a handling for
complex moving geometries on CPUs and GPUs, which in-
troduces only a low performance penalty when using the PSM
compared to an efficient LBM algorithm, with the difference,
that for the standard LBM step, the rotation / translation of the
geometry is not handled yet. So one would need some costly
PDF reconstruction algorithms, which we can fully avoid by
exploiting the PSM.
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(a) Scenario A: Geometry
rotating over full domain

(b) Scenario B: Geometry rotating in
small part of domain

FIG. 9: Block structure with 128 blocks for CPU node level
performance on LUMI-C, 64³ cells per block

FIG. 10: Node level performance of PSM vs LBM on 2x
AMD EPYC 7763 CPUs on LUMI-C with 128 blocks and

64³ cells per block. Scenario A and B are visualized in
Figure 9.
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tual rotating geometry. The rotor in Scenario A and B is ro-
tating clockwise around its center. The rotation is dealt with
by building a new solid volume fraction field B(x, t) from the
geometry field every time step as explained in section III. As
the geometry field is created in a pre-processing step, only the
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nario, because the rotating rotor covers a large portion of the
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s = 1. For Scenario B and s = 1, the result is even better,
here the handling of the rotation takes less than 3% of the
run time. Further, we observe that the super-sampling-factor
seams to have a negligible impact in the performance of the
rotation handling. For an industrial application such as the
CROR in Figure 5, the domain setup is close to scenario B,
therefore, the performance loss because of the rotation kernel
is expected to be below 3% of the run time.
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For the GPU node-level performance, we studied the same
four cases as for the CPU node lever performance, but this
time on one JUWELS-Booster node (Alvarez 2021), which
consists of four NVIDIA A100 40GB GPUs. We decomposed
the domain into four blocks with 256³ cells per block, so that
one GPU handles one block and the GPU is fully utilized.
The node level performance results are presented in Figure 11.
Again, we introduce the LBM bandwidth roofline to get an es-
timation for the theoretically maximum performance for our
LBM kernel. It is computed by the measured bandwidth of
the four GPUs, which is 4 ·1366 GB/s, divided by the number
of memory accesses to end up with a maximum performance
of 18092 MLUPS. The LBM kernel for Scenario B with a
low number of boundary cells reaches 16916 MLUPS, which
is over 93 % of the maximum achievable performance. The
same code for Scenario A is 5% slower, which is again be-
cause of the higher number of boundary cells in the domain.

For the PSM kernel without rotation, we observe the same
performance as for the LBM kernel for Scenario B, and even
a speed-up for Scenario B. The higher number of boundary
cells seems to have no effect on the superior performance of
the PSM code.

The handling of the rotation of the geometry shows a to
the CPU results comparable impact on the performance, with
10% performance loss for Scenario A and 8% performance
loss for Scenario B. Again, a higher super-sampling factor
seems not to have additional costs in terms of MLUPS.

We conclude, that we managed to implement a handling for
complex moving geometries on CPUs and GPUs, which in-
troduces only a low performance penalty when using the PSM
compared to an efficient LBM algorithm, with the difference,
that for the standard LBM step, the rotation / translation of the
geometry is not handled yet. So one would need some costly
PDF reconstruction algorithms, which we can fully avoid by
exploiting the PSM.

Visualization/ performance optimization by P. Suffa,  
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Scalability tests with CROR benchmark: CPU 
cluster and GPU cluster 
Small test: 108 cells, Large test: 4x109 cells

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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FIG. 12: Strong scaling of the CROR simulation on the CPU
partition of LUMI (AMD EPYC 7763 CPU) for the two

problem sizes in Table IV.

FIG. 13: Strong scaling of the CROR simulation on the CPU
partition of JUWELS (NVIDIA A100 GPUs) for the two

problem sizes in Table IV.

hiding strategies in WALBERLA more efficient.

VI. OUTLOOK: COUNTER ROTATING OPEN ROTOR

TODO

In Figure 1 we see the Q-criterion of the flow field around
the counter-rotating open rotors. This simulation is run on
JUWELS Booster on 36 NVIDIA A100 GPUs for two hours.
The simulation domain is split into 36 blocks with 256³ cells
per block, resulting in an overall count of 603,979,776 cells.
The visual output in Figure 1 is taken after 480,000 time steps,
which corresponds to 0.21 s in real-time. The simulation is
run on a uniform grid with a resolution of 0.003 m and a
Reynolds number of 4640.94. The rotors are rotating counter-
wise with a speed of 73.8 rad/s.

With this application we can show, that we enabled the effi-
cient movement/rotation of complex geometries in the WAL-

BERLA framework by the utilization of the PSM.

VII. CONCLUSION
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Part VI: waLBerla for wind energy
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The actuator line model

Solvers for Extreme Scale Computing  -  Ulrich Ruede

• Turbines are not geometrically 
resolved but represented by the 
forces they apply to the flow 
  
  

• Lift and drag coefficients are 
interpolated from airfoil data 

• Projection onto the grid via, e.g.,  
Gaussian kernel 

𝐹 = 1
2 𝜌𝑢2

𝑟𝑒𝑙𝑤𝑙(𝐶𝐿𝑒𝐿 + 𝐶𝐷𝑒𝐷)
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Wind turbine simulations - mesh refinement
Static refinement 

Automatic refinement around 
wind turbines 
Optionally: refinement at 
boundaries, user-defined boxes 
Gradient-based vs. Vorticity-
based 

Dynamic refinement 
Refinement criteria based on 
flow field 
AMR-GPU version available, 
continuing development

Solvers for Extreme Scale Computing  -  Ulrich Ruede
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Towards the simulation of wind farms
Anhalt wind farm (off 
Denmark) 
Actuator disc model 
domain: 2496 x 3920 x 40  
20 cells / diameter 
3840 Prozesse = 30 nodes à 
128 cores on Topaze Cluster 
(https://www-ccrt.cea.fr/fr/
moyen_de_calcul/index.htm) 

128 008 timesteps à 0.04s 
3662 MLUPS  
13679s run time 
9.4 time steps / second 
each cell has a size of (6.3m)³ 
cumulant LBM with D3Q27 
stencil 
periodic boundary conditions

Solvers for Extreme Scale Computing  -  Ulrich Ruede

https://www-ccrt.cea.fr/fr/moyen_de_calcul/index.htm
https://www-ccrt.cea.fr/fr/moyen_de_calcul/index.htm
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LBM for High-Re Flows: Drag crisis for flow past a sphere

Spherical obstacle in a 
simulated wind tunnel 
6 layers of refined meshes 
Reynolds numbers beyond 106 

Advanced Cumulant LBM with 
limiter (M. Geier)

Solvers for Extreme Scale Computing  -  Ulrich Ruede

6. TURBULENT SINGLE-PHASE FLOWS

defined using the sphere’s diameter as the reference length scale,

Re = u0d
∫0

. (6.1)

x

y z

D
d

x

y z

D
d

Figure 6.2: Simulation domain to investigate the flow field of a spherical object in a wind tunnel.
The setup shows the x y-plane at the centre of the sphere. Six layers of exponentially refined grids
have been used to resolve the sphere’s diameter with 512 grid cells. The domain size is 2D £D £D
with D = 20d and d is the sphere’s diameter.

6.3 Simulation Results

The drag coefficient cD for a spherical body is defined as:

cD = 8FD

Ωu0ºd 2 , (6.2)

where Ω refers to the mean density of the fluid. This work considers the density fluctua-
tions negligible; thus, the mean density is assumed to be unity. Hence, the only missing
parameter in Equation (6.2) is the force on the sphere FD. A standard way to calculate the
fluid’s force on a body is to apply the momentum exchange method [178]. The momentum
exchange between two opposing directions of neighbouring cells is

ci fi (t , x)°cī f ī (t , x +ci¢x) . (6.3)

With this equation, the momentum exchange for each boundary cell xb can be calculated
by a sum over all fluid neighbours

X
ci

£
fi (t , xb)+cī f ī (t , xb +ci¢x)

§
, (6.4)

where xb +ci¢x is the location of a fluid cell. Then, the total force on the boundary can be
calculated by summing up all contributions of each boundary cell xb

F =
X
xb

X
ci

£
fi (t , xb)+cī f ī (t , xb +ci¢x)

§
. (6.5)

90
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LBM at high Re

9.76·108 simulation cells 
60000 coarse timesteps  
500 000 fine time steps 
<10 hours using 32 AMD MI250X GPGPUs

Solvers for Extreme Scale Computing  -  Ulrich Ruede

6.4. Conclusion

0.001 1.70.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Velocity [m/s]

(a) Re = 1000 (b) Re = 10000

(c) Re = 100000 (d) Re = 200000

(e) Re = 300000 (f) Re = 400000

(g) Re = 600000 (h) Re = 800000

(i) Re = 1000000 (j) Re = 1140000

Figure 6.5: Instantaneous velocity field of the simulation of a sphere under various Reynolds
numbers. The simulation is shown at a cut through the x y-plane after 60000 timesteps on the
coarsest mesh. Increasing the Reynolds number shows a decreasing flow separation angle after
the spherical body.
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Figure 6.3: Average drag coefficient plotted against the Reynolds number Re. The average drag
coefficient is calculated by averaging the drag coefficient of the last 5 ·105 fine timesteps.
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Figure 6.4: Temporal evolution of the measured drag coefficient cD for Reynolds numbers
Re 2 {1 ·104,1 ·105,2 ·105,4 ·105,1.14 ·106}. The instantaneous drag coefficient shows strong fluctu-
ations, which causes an uncertainty in the average drag coefficient shown in Figure 6.3. A similar
phenomenon has been reported in the findings of Geier et al. [60]. However, it must be noted that
the fluctuations in Geier’s work seem smaller than ours.

goes along with recent findings of Astoul et al. [169, 182]. Their studies showed that the
non-hydrodynamic modes cross the grid interface and introduce spurious contributions
to the vorticity. It was concluded that these non-hydrodynamics occur independently of
the details of the grid transfer algorithm. Hence, the suggestion is to use an appropriate
collision method to account for the non-hydrodynamic contributions. Recent studies
assume that the cumulant collision operator might be a good candidate in this matter
[183].
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(1) (2) (3) (4) (5)

FIGURE 14 Case 15: Vortices behind a sphere of density ratio 0.05 at Ga = 500. In frames 4 and 5 the three vortex threads
delivering a constant torque to the ascending sphere are well visible. A Q criterion threshold of 10*10 is employed and coloring
is done by normalized vorticity, which ranges between -10 (blue) and 10 (red). Lighter colors correspond to stronger magnitude.

Case 16 displays a modification of the SP trajectory (Figure 13c), where the particle at ⇡p = 0.001 and Ga = 500 takes up a
slightly inclined spiraling path (inclination angle ˘ 0.2˝). Such behavior is also observed by Auguste & Magnaudet, who found
the corresponding motion already at ⇡p = 0.01. The spiral is described by a diameter of 1.09dp and vertical stride of 13.22dp;
the movement along this spiral by St = 0.074 and uz,t = 1.455.

6 CONCLUSION

In this work, we present an improved LBM for simulations of light particles submerged in a fluid, including a comparison
with previously established methods. This is based on a set of benchmarks that are chosen to expose specific di�culties and
peculiarities arising in systems of submerged particles with density ratios ~ 1. In order to achieve stable simulations without
excessively fine resolution, we adapt and apply the virtual mass approach of Schwarz et al.

44, resulting in the improved VM-

MEM-LBM. The underlying idea is to artificially increase the mass of the particle to avoid an otherwise vansihing denominator
that would amplify inaccuracies of the fluid-particle coupling scheme. This is exactly compensated by an appropriate force and
torque, which in practice requires an approximation of the spheres translational and rotational acceleration. This approach is
shown to enable density ratios of 0.001 and which would thus permit e.g. the simulation of spherical air bubbles in water. The
numerical stabilization scheme is validated both with respect to the accuracy of rotational and translational velocities.

In order to further increase the computational e�ciency of the parallel LBM code, we employ adaptive grid refinement. This
ensures an adequate and accurate representation of the flow features while permitting large computational domains. Areas in
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Part VII: 
Fully Resolved Particle Laden Flow 
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Vortices behind a rising sphere at 
Ga=500, density ratio 0.05

Werner, L., Rettinger, C., UR (2021). Coupling fully resolved light 
particles with the Lattice Boltzmann method on adaptively refined 
grids. Numerical Methods in Fluid Mechanics, vol. 93, pp. 3280-3303



waLBerla - multi physics simulation 
Geometrically resolved particles/LBM hydrodynamics 
sediment transport Flow domain: 

1024 x 512 x 480 = 2.5e8 cells 
D3Q19 TRT 

14500 particles 
diam = 10-100 LBM cells 
log-normal distribution 
momentum exchange 
lubrication forces 

7e6 LBM time steps 
each 10 DEM substeps 

Supermuc-NG 
160 Nodes = 7680 processes 
48h run time
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Rettinger, C., Eibl, S., Rüde, U., & Vowinckel, B. (2022). 
Rheology of mobile sediment beds in laminar shear flow: 
effects of creep and polydispersity. Journal of Fluid 
Mechanics, 932.



Modeling particles transported below 
below a free surface flow 
The transport of particles downstream 
leads to dune formations that are 
effectively traveling upstream 
First simulations that model this effect 
from first principles based on an 
interaction between 

Free surface flow 
Wave formation 
Transport of fully resolved 
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waLBerla - simulation of anti-dunes



waLBerla - simulation of anti-dunes
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Figure 1: Schematic representation of the simulations, coupling the liquid (l) with a particle
(p) and gas (g) phase (a), and the simulation setup in its initial condition (b). Figure 1b is a

zoom into the computational domain covering only 16 % of its streamwise extent.

2. Numerical methods
All numerical simulations in this work were performed using the open-source multi-physics

software framework ��LB���� (Bauer 2021, https://www.walberla.net/). In what follows,
we briefly summarize the simulation’s key features, namely the fluid–gas, the particle–particle,
and the fluid–particle interactions. Figure 1a presents a sketch of our numerical scheme.

2.1. Free-surface lattice Boltzmann method

The lattice Boltzmann method (LBM, Krüger et al. 2017) discretizes the Boltzmann equation
from kinetic theory and describes the evolution of particle distribution functions (PDFs) on a
uniform computational grid to simulate a fluid flow. Macroscopically, the LBM approximates the
Navier–Stokes equations with second-order accuracy in space x and time C. The cell-local fluid
density dl (x, C) and velocity ul (x, C) are given by the zeroth- and first-order moments of the cell’s
PDFs. In the remainder of this article, all quantities denoted with the superscript LU are specified
in a normalized LBM unit system. We set the cell size �GLU = 1, time step size �CLU = 1, and the
reference density of the fluid d

LU
l,ref = 1. We use the D3Q27 cumulant collision model proposed by

Geier et al. (2015) and set all relaxation rates to unity but lLU that defines the kinematic viscosity
of the fluid a

LU
l = 1/3(1/lLU ��CLU/2). We model no-slip boundary conditions at solid obstacles

using the bounce-back rule (Krüger et al. 2017).
The ��LB���� framework includes an implementation of the free-surface lattice Boltzmann

method (FSLBM, Schwarzmeier et al. 2023). The FSLBM is based on a volume of fluid scheme
and simulates the interface between two immiscible fluids. The model assumes that the liquid
fluid (higher density) governs the flow dynamics of the system so that the fluid flow in the gaseous
fluid (lower density) is neglected. A free-surface boundary condition captures the motion of the
liquid–gas interface. The boundary condition incorporates the gas pressure ?g and the Laplace
pressure ?l,L (x, C) = 2fl^l (x, C), where fl is the surface tension of the liquid, and ^l (x, C) is the
local curvature of the free surface.

2.2. Particle–particle and fluid–particle coupling

The temporal evolution of the translational and rotational velocity, up,8 and 8p,8 , of an individual
rigid particle 8 is described by the Newton–Euler equations for rigid-body motion. The total force

6

G

I

H

�0.07 0.21 0.49 0.77
DG,l (x, C ) / (m·s)

0.0027 0.0029 0.0031
3 / m

Figure 3: Visualization of the simulated velocity in streamwise direction D
G,l (x, C). The

undulation of the sediment bed and free surface of the liquid are in phase, conforming to the
definition of antidunes. The figure is a zoom into the computational domain covering only

25 % of its streamwise extent.

4. Results
Our particle-resolved simulations provided the position of each particle as well as the location

of the water surface in space and time, and full fluid information (figure 3). Bed elevation
perturbations arose spontaneously from the initial flat bed right from the start of the simulations.
From then on, a regular longitudinal pattern of quasi-periodic bedforms, with gentle slopes up-
and downstream of the crests, prevailed throughout the simulation time. The bed patterns were
approximately in phase with respect to the free surface and they slowly migrated upstream (see
movie 1 in supplementary material). Therefore, these bedforms can be unequivocally classified as
UMAs that compare well to the observations of the experiments of Pascal et al. (2021). A data set
with such a high resolution as the one generated here numerically, has so far not been available
from physical experiments on movable beds under supercritical flows.

4.1. Bed elevation perturbations

Space–time evolution diagrams of the bed surface, for the simulated and the experimental
bedforms, are plotted in figure 4. Such diagrams result from laterally-averaged bed surface profiles
at each time step of the simulation, and from footage recorded from the transparent channel walls in
the experiments of Pascal et al. (2021). From the original experimental data, we have selected the
intervals corresponding to the lower left parts of figures 3a and 3d in this reference, to reproduce a
part of their bed elevation plots to compare with the scales of our numerical data. The alternating
blue and yellow (dark and light) diagonal strips denote the troughs and crests of the bedforms,
respectively. The experimental and numerical diagrams with the evolution of the bottom elevation
in the spatial–temporal domain are in good qualitative agreement. A similar upstream migration
trend of the bedforms is clearly visible due to the negative slope of the strips. In some regions the
strips bend, indicating acceleration/deceleration, or even stationarity of the bedforms. Overall, the
simulated bedforms appear stable and compare well to their experimental counterparts.

As pointed out by Pascal et al. (2021), the definition of a dominant bedform migration speed
seems inappropriate given the nonuniformity of the bedform celerities observed. The same
reasoning is valid for the amplitude and the wavelength of the antidunes. In our simulations,
the amplitude of the simulated bed undulations ranged approximately from 1 to 3 times the
particle median grain size, and the wavelength ranged from about 10 to 15 times the water depth.
These values are in good quantitative agreement with the experimental data, where the dune
amplitudes ranged from one particle median grain size to the mean flow depth (⇡ 3350), and
typical wavelengths varied from 0.05 to 0.15 m (⇡ 6⌘0 to 15⌘0).

To obtain a more precise comparison of the numerical and experimental data in terms of their
bedform size and fluctuations, we have followed Pascal et al. (2021) and have computed the
power spectral density (PSD) from the square of the two-dimensional discrete Fourier transform
of ⌘b (G, C) with respect to the streamwise position G and time C. We have normalized the PSD
by the total number of samples available for G and C. The results are shown in figure 5, along
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2. Numerical methods
All numerical simulations in this work were performed using the open-source multi-physics

software framework ��LB���� (Bauer 2021, https://www.walberla.net/). In what follows,
we briefly summarize the simulation’s key features, namely the fluid–gas, the particle–particle,
and the fluid–particle interactions. Figure 1a presents a sketch of our numerical scheme.

2.1. Free-surface lattice Boltzmann method

The lattice Boltzmann method (LBM, Krüger et al. 2017) discretizes the Boltzmann equation
from kinetic theory and describes the evolution of particle distribution functions (PDFs) on a
uniform computational grid to simulate a fluid flow. Macroscopically, the LBM approximates the
Navier–Stokes equations with second-order accuracy in space x and time C. The cell-local fluid
density dl (x, C) and velocity ul (x, C) are given by the zeroth- and first-order moments of the cell’s
PDFs. In the remainder of this article, all quantities denoted with the superscript LU are specified
in a normalized LBM unit system. We set the cell size �GLU = 1, time step size �CLU = 1, and the
reference density of the fluid d

LU
l,ref = 1. We use the D3Q27 cumulant collision model proposed by

Geier et al. (2015) and set all relaxation rates to unity but lLU that defines the kinematic viscosity
of the fluid a

LU
l = 1/3(1/lLU ��CLU/2). We model no-slip boundary conditions at solid obstacles

using the bounce-back rule (Krüger et al. 2017).
The ��LB���� framework includes an implementation of the free-surface lattice Boltzmann

method (FSLBM, Schwarzmeier et al. 2023). The FSLBM is based on a volume of fluid scheme
and simulates the interface between two immiscible fluids. The model assumes that the liquid
fluid (higher density) governs the flow dynamics of the system so that the fluid flow in the gaseous
fluid (lower density) is neglected. A free-surface boundary condition captures the motion of the
liquid–gas interface. The boundary condition incorporates the gas pressure ?g and the Laplace
pressure ?l,L (x, C) = 2fl^l (x, C), where fl is the surface tension of the liquid, and ^l (x, C) is the
local curvature of the free surface.

2.2. Particle–particle and fluid–particle coupling

The temporal evolution of the translational and rotational velocity, up,8 and 8p,8 , of an individual
rigid particle 8 is described by the Newton–Euler equations for rigid-body motion. The total force
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Figure 4: Sediment bed elevation ⌘b (G, C) for E1 (upper) and E4 (lower): (a) and (c) data of

Pascal et al. (2021), and (b) and (d) data from the numerical simulations.

Label ⌘0/350 ⌘0/350 ⌘̄/350 k k ⇥ ⇥ @b⇤ @b⇤
exp. sim. sim. exp. sim. exp. sim. exp. sim.

E1 2.86 2.97 3.02 0.051 0.044 0.085 0.086 0.033 0.020
E4 3.59 3.59 3.10 0.052 0.051 0.108 0.119 0.100 0.052

Table 2: Summary of experimental (exp.) and simulated (sim.) variables, where k is the
mean bed slope, ⇥ = 'bk/[350 (dp/d1 � 1)] is the Shields number, and

@b⇤ = @b/[(dp/d1 � 1)633
50]

1/2 is the Einstein bed load number.

with the experimental PSD. Although there is not a perfect match between the spectra for the
experimental and numerical bedforms, the range of wavelengths and periods agree reasonably
well. The narrower range of periods and wavelengths in the spectra for the numerical data can be
attributed to the much shorter data series from the simulations in comparison to the experiments
(45 s simulation time versus more than 4600 s in E1, and 2800 s in E4 in the experiments).

4.2. Hydraulic variables and sediment transport

To further compare the experimental and simulated flow and sediment transport conditions in a
quantitative sense, the normalized average water depth, the bottom slope, the Shields number and
the Einstein bed load number are defined and summarized in table 2. It must be noted that the
bottom profile in the simulations was intentionally horizontal, and thus the slope considered in
table 2 is the tangent to the acting force imposed in G–I direction.

Comparing the numbers of table 2, the numerical and experimental Shields numbers are very
similar. We note that in our simulations the horizontal boundary conditions were periodic, that
is, the domain was not bound by lateral walls as in the physical experiments. Therefore, for the
simulations, the boundary shear stress in the Shields number was computed based on the average
water depth (⌘̄ = 'b) from C = 30 s to C = 75 s; whereas, for the experiments, the boundary
shear stress considered the hydraulic radius 'b as a correction for the effect of the lateral wall
roughness. The simulated sediment transport rates were lower than the experimental mean values
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Welcome to the Era of Prophecy Machines
Algorithms can make science predictive 
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… 

An ancient dream of humans becomes reality … 
(especially of politicians) 
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Predictive capability can be the basis for far-reaching decisions 
Impact is yet little understood
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Clarke's Third Law: 
Any sufficiently advanced 

technology is indistinguishable 
from magic.
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