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Preface

The Seminar on Numerical Analysis (SNA) started in 2003 and since then it has become an estab-
lished event for the Czech scienti�c community working in the �eld of mathematical modelling,
numerical analysis, and computer simulations. The SNA consists of a winter school, contributed
research talks and poster presentations. The winter school comprises invited survey lectures
delivered by renown specialists, possibly from foreign countries.

SNA'25 is held in Ostrava and organized by the Department of Applied Mathematics, Faculty of
Electrical Engineering and Computer Science, V�B -Technical University of Ostrava jointly with
the Institute of Geonics of the Czech Academy of Sciences, Ostrava. The conference is under the
auspices of the Union of Czech Mathematicians and Physicists and EU-MATHS-IN.CZ.

In memory of one of the conference founders and a long term main organizer of these events,
Prof. Radim Blaheta, we newly establish The Blaheta Lecture. Its �rst speaker is Prof. Ulrich
Rüde, FAU Erlangen-Nürnberg, providing the talk entitled Solvers for Extreme Scale Computing.
Further, several other foreign guests, who cooperated with Radim Blaheta, accepted our invi-
tation to participate at SNA'25. Namely, Prof.Massimiliano Ferronato (University of Padova),
Prof. Akhtar Khan (Rochester Institute of Technology, on-line), Prof. Johannes Kraus (University
of Duisburg-Essen), and Prof. Youseph Saad (University of Minnesota, on-line).

SNA'25 has 66 participants. It includes 25 short talks, 15 posters, and the following tutorial
lectures within the Winter School:

� M.Ferronato: Coupled Simulation of Flow and Deformation in Fractured Porous Media:
Discretizations, Solvers and Applications

� M.T·ma: Solving Large Sparse Linear Systems and Least Squares

� P.Vodstr£il: Selected Inequalities in the Analysis of Domain Decomposition Methods

� J.Vybíral: Mathematics of Neural Networks

This proceedings contains extended abstracts to several talks or posters. Short abstracts to all
contributions, presentations of invited speakers, and the list of participants are available at the
conference web pages sna.vsb.cz.

Last but not least we would like to thank all the participants for supporting the SNA conference
series. We are honored that we can continue this traditional event that has been established by
our teachers.

On behalf of the Programme and Organizing Committee of SNA'25,

David Horák, Dalibor Luká², Ji°í Starý and Stanislav Sysala
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Bayesian inversion with neural network surrogates

for TSX parameter estimation

S. Bére²ová 1,2, M.Bére² 1,2, T. Luber 1

1 Institute of Geonics, Czech Academy of Sciences, Ostrava
2 Faculty of Electrical Engineering and Computer Science, V�B -Technical University of Ostrava

1 Introduction

This contribution presents a Bayesian framework for solving a geotechnical inverse problem based
on the Tunnel Sealing Experiment (TSX), conducted in an underground research laboratory in
Canada, see [1].

We consider the standard Bayesian inversion scheme with an additive noise model. In this
framework, we work with three random variables: U , Y , and Z, representing the unknown
parameters, the observed data, and the observational noise, respectively. A mathematical model
G : Rn → Rm is provided, and the objective is to determine the posterior distribution of U given
a speci�c vector of noisy outputs y ∈ Rm (i.e., a realization of Y ). For the additive noise model,
Y is expressed as

Y = G (U) + Z. (1)

The Bayesian approach also incorporates prior information about the input parameters, inde-
pendent of the observed data. This prior distribution re�ects preliminary knowledge about the
input parameters obtained from prior experience.

The probability density function (pdf) of U is referred to as the prior pdf and is denoted by fU .
Similarly, fZ , the pdf of Z, is called the noise pdf. For a given y, fU , and fZ , the Bayesian ap-
proach yields the conditional distribution of U given Y = y, known as the posterior distribution:

fU |Y (u|y) = fZ (y −G (u)) fU (u)�
Rn fZ (y −G (u)) fU (v) dv

∝ fZ (y −G (u))︸ ︷︷ ︸
data likelihood

fU (u)︸ ︷︷ ︸
prior

. (2)

Here, the symbol ∝ indicates proportionality, meaning equality up to a multiplicative constant.
The subsequent step is to generate samples from the posterior distribution using Markov Chain
Monte Carlo (MCMC) methods, which constitutes the main objective of this contribution.

The remainder of the text is organized as follows: Section 2 de�nes the observation operator
G for the TSX inverse problem. Section 3 details the MCMC sampling framework, which is
enhanced by a dynamically re�ned deep neural network surrogate model. Section 4 provides
visualizations of the posterior distribution.

2 Poroelasticity problem

The following Biot poroelasticity model with zero volume forces is considered:
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−div (C : ε (u)) + [αB∇p] = 0 (3)

cs
∂p

∂t
−∇ ·

(
k

µ
∇p

)
+

[
αB

∂

∂t
(div (u))

]
= 0 (4)

in Ω (see Fig. 1). Here, C is the elasticity tensor, u is the displacement vector, and ε (u) =
1
2∇u+ 1

2 (∇u)T . Additionally, p denotes the pore pressure. For the isotropic linear elastic case,
C : ε (u) = 2Gε (u) + λdiv (u) I, where λ = Eν

(1+ν)(1−2ν) and G = E
2(1+ν) .

The material parameters are as follows: Biot-Willis constant αB, storativity cs, porosity k,
dynamic viscosity µ, Young's modulus E, and Poisson's ratio ν.

Figure 1: Whole domain Ω (left), cutout - subdomains around the tunnel (right)

The initial conditions are as follows: zero initial displacement u0 = 0 m, initial pore pressure
p0 = 3 · 106 Pa, and an initial stress tensor characterized by nonzero values σx and σy and
an angle α. Constant pressure of 3 · 106 Pa and zero normal displacements are prescribed on
the outer (square) boundary. The boundary conditions on the inner boundary (elliptic hole)
simulate the tunnel drilling phase (17 days) followed by a relaxation period (18 to 365 days).
During the drilling phase, the initial pore pressure and the initial stress, transformed into the
normal direction, decrease linearly to zero. In the relaxation period, both the pore pressure
and the normal stress remain at zero. The model was implemented using FEniCSx. For further
details, see [2].

3.5 m

4.375 m

1.5 m

4 m

4 m

1.5 mTSX

HGT1-4

HGT1-5

HGT2-4

HGT2-3

tunnel

Figure 2: Observed data (left), position of control points (right)
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The Bayesian inverse problem considered here is inspired by inverse problems solved determinis-
tically by [1]. The available data consist of four time series representing pore pressure measure-
ments at four control points over one year, obtained from TSX (see Fig. 2). Each time series is
sampled at 36 uniformly distributed time points, represented as dots in Fig. 2.

The unknown parameters are the values of k
µ , cpp, E, and ν, which are assumed to be constant

within each of the nine subdomains. Additional unknown parameters include the initial stresses
σx and σy, as well as the angle α. This de�nes the observation operator G : R39 → R144.

3 MCMC sampling

The MCMC sampling framework is implemented in Python using the SurrDAMH library, which
is available at https://github.com/dom0015/surrDAMH. It is based on the Delayed Acceptance
Metropolis-Hastings (DAMH) algorithm, accelerated through the adaptive construction of a
surrogate model (DAMH-SMU), see [3].

To further enhance e�ciency, proposals are generated using a subchain approach, as described
in [4], and it is also possible to adapt the proposal distribution following the method of [5].
The steps of the algorithm are summarized in Alg. 1, where the proposal distributions q(k) are
Gaussian.

Algorithm 1 DAMH-SMU adaptive algorithm with subchains

Collect an initial set S of snapshots of G, i.e., pairs
(
u(i), G

(
u(i)

))
.

For k = 0, 1, . . .

1. Construct surrogate model G̃(k) : Rn → Rm based on snapshots in S.

2. Generate proposal v using a subchain: Set w(0) = u(k). For m = 0, 1, . . . ,mmax − 1

(a) Propose a sample z from q(k)
(
·|w(m)

)
.

(b) With probability ã
(
w(m), z

)
= min

{
1,

q(k)(w(m)|z)fZ(y−G̃(k)(z))fU (z)

q(k)(z|w(m))fZ(y−G̃(k)(w(m)))fU(w(m))

}
,

accept z, i.e., set w(m+1) = z. Otherwise, set w(m+1) = w(m).

3. Set v = w(mmax).

4. With probability a
Q̃,µ

(
u(k), v

)
= min

{
1,

fZ(y−G̃(k)(u(k)))fZ(y−G(v))

fZ(y−G̃(k)(v))fZ(y−G(u(k)))

}
, accept v, i.e., set

u(k+1) = v. Otherwise, reject v, i.e., set u(k+1) = u(k).

5. Add (v,G (v)) to S.

6. Construct updated proposal pdf q(k+1).

The algorithm assumes the use of non-intrusive surrogate models G̃(k) ∼ G, which can be con-
structed from collected snapshots

(
u(k), G

(
u(k)

))
and adaptively re�ned. In addition to standard

approaches such as polynomial chaos approximation or radial basis function interpolation, sur-
rogate models can also be constructed using machine learning techniques.

8



In this work, we use a multilayer perceptron (MLP) neural network regressor with a tanh ac-
tivation function, the ADAM (Adaptive Moment Estimation) learning algorithm, and a mean
square error loss function. The MLP is trained continuously during the sampling process. When-
ever new data become available, the MLP is trained on them until a speci�ed loss threshold is
achieved; subsequently, the new data are appended to the entire training set. Training is skipped
if the target loss is already met and no new data are added (until additional data arrive).

For the TSX problem, the layer sizes were set to (39, 128, 128, 128, 144). However, the choice of
MLP structure, along with other settings such as learning rates and loss thresholds, is generally
highly problem-speci�c.

4 Bayesian inversion results

The posterior distribution is approximated by samples generated using Alg. 1. These samples
can be visualized, for instance, in the form of one- and two-dimensional marginal histograms
(see Fig. 4). The �gure displays histograms for a subset of random parameters�the values of
k
µ for each of the nine subdomains shown in Fig. 1. The prior distribution for these unknown
parameters was chosen as LogN (−42.78, 2), independently for each parameter.
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Figure 3: Posterior distribution re�ected into observed data
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Figure 4: Histograms of posterior samples; parameters 0-8 corresponding to k
µ in all subdomains

Internally, the sampling framework employed a standard normal distribution N (0, 1) for each
independent component, with a transformation to the lognormal distribution applied prior to
evaluating G for each sample. The orange curves in Fig. 4 represent the prior pdf (i.e., the
pdf of N (0, 1)), while the red circles indicate 1, 2, and 3 standard deviations around the mean.
Subdomain 0 contains control point HGT1-5, subdomain 3 contains HGT2-4, subdomain 4 con-
tains HGT1-4, and subdomain 7 contains HGT3-4. For these parameters, we observe that the
marginal posterior pdfs di�er signi�cantly from the prior pdfs.

Additionally, the posterior distribution can also be represented in the form of observed data�in
this case, pore pressure timelines, see Fig. 3. These histograms allow us to assess the model's
ability to reproduce the observations. Figure 5 also displays the best �t among all generated
samples, determined in terms of data likelihood.
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Figure 5: Best �t; dots represent G (ubest), where ubest is a best �tting sample

5 Conclusions

In this contribution, we demonstrated that our Bayesian inversion framework successfully in-
tegrates all available data into the model, achieving a level of consistency not attained in our
previous results or in the deterministic approach presented by [1]. However, the current parame-
terization may be overly �exible, as evidenced by the histograms, which show minimal deviation
from the prior distributions. This suggests that the model may include too many degrees of
freedom for the inversion process.

Future work will focus on identifying parameters that have the most signi�cant impact on the
measurements. By reducing the parameter set while maintaining the same approximation prop-
erties, we aim to improve the e�ciency and interpretability of the inversion framework.

Acknowledgement: This work was supported by the European Union under Grant Agreement
no 101166718 (EURAD-2 project).
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Shape optimization of water turbines

M.Brandner, J. Egermaier, H.Kopincová

Univeristy of West Bohemia, Pilsen

1 Introduction

The problem of determining the optimal shape of a domain or its parts (e.g., water turbine
blades) is a constrained optimization problem. This requires de�ning an objective function (typ-
ically in integral form), specifying constraint conditions (�uid �ow equations in this case), and
selecting design parameters to describe the shape. Crucially, the optimization process demands
the computation of the gradient, which is fundamental for any gradient-based optimization meth-
ods and includes the shape derivative. To compute the gradient, the continuous adjoint method
is applied, that means we starting with the derivation of the adjoint problem, followed by its dis-
cretization. This methodology, will be demonstrated using a simpli�ed two-dimensional laminar
�ow model. The chosen solver for both the state and adjoint problems is thoroughly discussed
in [2]. Consider the following optimization problem:

min
u,p,Ω

F (u, p,Ω) (1)

subject to incompressible steady-state Navierâ¿�Stokes equations

Ru
i = −∂τij

∂xj
+ uj

∂ui
∂xj

+
∂p

∂xi
= 0, i = 1, 2 x ∈ Ω ⊂ R2, (2)

Rp =
∂uj
∂xj

= 0, x ∈ Ω ⊂ R2, (3)

where ui is a component of the velocity vector, p := p
ρ is static pressure divided by con-

stant density of the liquid and constant kinematic viscosity ν is considered in the stress tensor
τij = ν

(
∂ui
∂xj

+
∂uj

∂xi

)
. The Lipschitz domain boundary ∂Ω := Γ consists of several disjoint parts:

in�ow Γin, out�ow Γout, periodic parts Γ1, Γ2 (it holds that Γ2 = T (Γ1) is a translational copy of
Γ1 under a map T with the opposite normal vector with respect to Γ1 in the corresponding points
of both boundaries) and optimized part of the boundary Γopt with following boudary conditions:

u = uin, x ∈ Γin, (4)

u = 0, x ∈ Γopt, (5)

u(x) = u(T (x)), x ∈ Γ1, (6)

p(x) = p(T (x)), x ∈ Γ1,

τij(x) = τij(T (x)), x ∈ Γ1,(
∂ui
∂xj

+
∂uj
∂xi

)
nj = 0, i = 1, 2 x ∈ Γout, (7)

p = pout, x ∈ Γout,

where nj is the jth component of the outward unit normal vector to the corresponding part of
the boundary. uin and pout are given functions and the Einstein convention, where repeated
indices imply summation, is used.
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For optimization problems with equality constraints, it is appropriate to formulate the Lagrange
function

L = F +

�

Ω

λiR
u
i dΩ+

�

Ω

λpR
p dΩ, (8)

where for each �ow variable ui, i = 1, 2, and p we de�ne so-called adjoint variables λi, i = 1, 2,
and λp. The next approach is based on the method of C�©a, see [3].
Next, it is necessary to choose design variables q ∈ Rnq . Complex shapes, such as a turbine blade,
are suitably described using B-splines. This description is a linear combination of B-spline basis
functions with coe�cients known as control points, see [2]. For the selected solver, we choose
as our design parameters the set of control points, speci�cally the coordinates of these control
points. In the following text, the symbol q is used to represent an arbitrary element of the vector
q.

2 Objective function

The overall objective function, which is mentioned in (1), can be considered as an appropriate
weighted combination of multiple components. In this text, we will introduce four components
of the objective function F1, F2, F3, F4, so that:

F = w1F1 + w2F2 + w3F3 + w4F4. (9)

1. The function F1 quanti�es the e�ect of the head. By optimizing this function, we achieve
a minimal di�erence between the target head Htar and the actual head H. The function
F1 is prescribed on the in�ow and out�ow part of the boundary, Γin and Γout. It is de�ned
as follows:

F1 =
1

2

(
H −Htar

Htar

)2

, (10)

where the head H is de�ned as follows:

H =
1

ρgSin

�

Γin

ptot,in dΓ− 1

ρgSout

�

Γout

ptot,out dΓ, (11)

for ptot = pstat +
1

2
ρv2, pstat = ρ p, v =

Q

S
, (12)

where pstat is static pressure and p kinematic pressure, further ρ denotes the density of the
liquid, g gravitational acceleration, Q is the �ow rate calculated from the velocity on the
inlet boundary uin and S is the area of the respective boundary segment.

2. The function F2 is related to the e�ciency of the water turbine. The ideal state is 100%
e�ciency, and therefore, we will minimize the deviation from this ideal state. Thus, we
de�ne the function F2 as follows:

F2 = 1− Mω

QρgH
, (13)

where ω = const. denotes the angular velocity of the turbine shaft. The torque M , which
acts on the turbine blade, i.e. Γopt, is de�ned as follows:

M = N

�

Γopt

M · e dΓ, where M = r× F, F = n pstat (14)
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and e is the direction of the axis of rotation, N is the number of blades, F denotes the
force acting on the blade, r is the position vector perpendicular to the axis of rotation, and
n is the normal vector pointing outward from the suction side. The above formulas are
valid for 3D calculations. For our simpli�ed 2D model, we choose e = (1, 0, 0), r = (0, 0, 1),
ω = 1 and N = 5

3. The function F3 represents the pressure distribution on the blade. The optimization aims
to match this distribution as closely as possible to the target pressure, ptar. Hence, F3 is
de�ned as

F3 =
1

2

�

Γopt

(p− ptar)
2

p2tar
dΓ. (15)

4. The �nal part of the objective function, F4, minimizes the di�erence between the out�ow
boundary velocity and a given target out�ow velocity utar. This prevents undesirable
turbulence behind the runner, thereby improving overall e�ciency. Thus, F4 is de�ned as:

F4 =
1

2

�

Γout

||u− utar||2

||utar||
dΓ. (16)

3 Adjoint problem

To derive gradient, it is necessary to determine the total derivative of the Lagrange function (8)
with respect to the shape parameters, i.e. dL

dq . Since the Lagrange function involves integrals,
products, and quotients, the resulting expression will be highly complex, with some components
being computationally infeasible to evaluate. However, it can be simpli�ed by appropriately
nullifying certain terms. This approach, detailed in [1], leads to the following adjoint problem

Rλ
i = −

∂τaij
∂xj

+ λj
∂uj
∂xi

− uj
∂λi

∂xj
− ∂λp

∂xi
= 0, i = 1, 2, x ∈ Ω ⊂ R2, (17)

Rλp =
∂λj

∂xj
= 0, x ∈ Ω ⊂ R2 (18)

with following boundary conditions

λini = −(C1 + C3)
∂f1,in(p)

∂p
, λiti = 0, x ∈ Γin, (19)

λini = C2
∂f2,opt(p)

∂p
− w3

∂f3,opt(p)

∂p
, λiti = 0, x ∈ Γopt, (20)

τaijnj + ujnjλi + λpni = −w4
∂f4,out(u)

∂ui
, i = 1, 2, x ∈ Γout, (21)

λ(x) = λ(T (x)), x ∈ Γ1, (22)

λp(x) = λp(T (x)), x ∈ Γ1,

τaij(x) = τaij(T (x)), x ∈ Γ1,

where τaij = ν
(

∂λi
∂xj

+
∂λj

∂xi

)
representing the adjoint stress tensor and

C1 =

(
H

Htar
− 1

)
w1

Htar
, C2 =

w2Nω

QρgH
, C3 =

w2Nω

QρgH2

�

Γopt

f2,opt(p)dΓ.
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4 Gradient

After adjoint problem formulation we obtain the expression for the gradient components in the
form

dL

dq
= C2

�

Γopt

(
∂f2,opt
∂xj

nj − κoptf2,opt

)
dxi
dq

nidΓ + w3

�

Γopt

(
∂f3,opt(p)

∂xj
nj−

− κoptf3,opt(p))
dxi
dq

nidΓ−
�

Γopt

(
τaijnj + ujnjλi + λpni

) ∂ui
∂xk

nk
dxl
dq

nldΓ

−
�

Γopt

∂τij
∂q

njλidΓ +

�

Γopt

(
λjR

u
j + λpR

p
) dxi

dq
ni dΓ, (23)

The numerical computation proceeds as follows: we set the initial shape of the blade, i.e., the
boundary Γopt, and solve the primal problem (2) and (3) with boundary conditions (4), (5), (6),
(7). This provides the state variables u1, u2 and p. The adjoint quantities λ1, λ2 and λp are
obtained by solving the adjoint problem (17) and (18) with boundary conditions (19), (20), (21)
and (22). Then, the gradient is computed using equation (23) and the shape of the blade is
adjusted using any gradient-based method (here, for simplicity, the steepest descent method is
used).

5 Conclusion

Our numerical experiments (not presented here) show, that the objective function as well as
its individual components are decreasing, so this method shows great promise for the further
development (especially into 3D and turbulent �ow).

Acknowledgement: This work was supported by Technology Agency of the Czech Republic
(TA CR) grant No. TK04020250.
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Two types of preconditioning of discrete convection-di�usion

equations with spectral estimates

L.Gaynutdinova, M. Ladecký, I. Pultarová, J. Zeman

Czech Technical University in Prague
University of Freiburg

1 Introduction

We focus on preconditioning of discretized di�erential operators and obtaining guaranteed bounds
to the spectra of the resulting preconditioned matrices. We are concerned with two particular
methods of precoditioning. The �rst type is performed by applying a discretized Green operator,
which we call Green preconditioning. In the second method, a diagonal scaling is added, which
we call Green-Jacobi preconditioning.

In recent years, new approaches yielding guaranteed bounds to eigenvalues of a preconditioned
matrix by the Green matrix have been developed; see e.g. [3, 2]. They are based on local in-
spection of the data of the problem and of the Green operator. In this article, we adapt this
technique to time-dependent PDEs, possibly with a convective term. While the Green precondi-
tioner reduces spreading of the eigenvalues caused by di�erentiation, the Jacobi preconditioning
can help to reduce the impact of highly contrasted data.

The goal of this paper is to apply Green and Green-Jacobi preconditioners to a model problem
and provide lower and upper bounds to eigenalues of the preconditioned matrices. The model
problem reads to solve

ct
∂u

∂t
= ∇ · a∇u+ cc b · ∇u+ f (1)

on a polygonal domain Ω ⊂ R2 with homogeneous Dirichlet boundary conditions on ∂Ω, where
a is a point-wise positive constant or a symmetric and positive de�nite 2× 2 matrix with every
element essentially bounded in Ω. Vector b has zero divergence in Ω and f ∈ L2(Ω). The
constants ct and cc admit values of 0 or 1, indicating whether the corresponding term is present
in the equation.

2 Preconditioning

Equation (1) is discretized by the �nite element method (FEM) with triangular elements and
piecewise linear basis functions. The time evolution is approximated by the implicit Euler method
with the time step dt. Thus we obtain a (set of) system(s) of linear equations of the form

ct
dt
Mu− Kau− ccCu =

ct
dt
Mv + f

where Ka is the sti�ness matrix where the subscript a indicates the data of the di�usion term.
The matrices M and C are the mass matrix and a nonsymmetric matrix corresponding to the
convective term, respectively. Vector v represents a solution obtained in the previous time step.
The Green and Green-Jacobi preconditioners considered here are

Lp =
ct
dt
M− Kp, Lp,D = DAL

1
2

(
ct
dt
M− Kp

)
DAL

1
2 ,
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respectively, where Kp is the sti�ness matrix where the subscript p indicates the constant data
a(x) := p, x ∈ Ω, and

(DAL)ii =
(Aa)ii
(Lp)ii

, where Aa =
ct
dt
M− Ka.

3 Eigenvalue bounds

Once we have de�ned the Green and Green-Jacobi preconditioning matrices Lp and Lp,D, re-
spectively, we aim to provide bounds to eigenvalues of the preconditioned matrices, namely the
bounds to the spectra

Λp = σ

(
L−1
p

(
ct
dt
M− Ka − ccC

))
and Λp,D = σ

(
L−1
p,D

(
ct
dt
M− Ka − ccC

))
,

respectively. Our estimating methods are based on pair-wise comparing local contributions to
matrices ct

dt
M−Ka − ccC and Lp,∗. Providing the local matrices pair-wise share their kernels, we

can obtain quite accurate bounds for every particular eigenvalue in Λp,∗. However, the situations
di�er for Green and Green-Jacobi precoditioners, for di�erent choices of cc and for smooth or
step function a. Depending whether cc = 0 or 1, we call the bounds LRB (locally obtained real
bounds) and LCB (locally obtained complex bounds), respectively. While LRB yields bounds
for every particular eigenvalue, LCB only bounds all complex eigenvalues by a rectangle in the
complex plain. We note that no satisfactory results are obtained from LRB in general for Green-
Jacobi preconditioning if ct = 0 and a is smooth. On the other hand, if a is a step function,
we can obtain sensible bounds to most of the eigenvalues and a few additional outliers. The
applicability of our methods is summarized in Table 1.

smooth a step a
ct cc Lp Lp,D Lp Lp,D
0 0 LRB - LRB LRB+outliers
1 0 LRB LRB LRB LRB
1 1 LCB LCB LCB LCB

Table 1: Applicability of LRB and LCB estimates of spectra of preconditioned matrices for
smooth and step function a.

Basics of the methods LRB and LCB for the Green preconditioner are introduced in [2] for the
case ct = 0 and both cc = 0 or 1. The methods can be modi�ed to cover the case ct = 1 in
a fairly straightforward way. The LRB and LCB estimates for the Green-Jacobi preconditioner
including proofs of Lemmas 3.2 and 3.3 and other related issues will be presented in a paper
currently being prepared for publication.

Remark 3.1. A proof of the spectral bounds for Green-Jacobi preconditioner Lp,D can be based
on a spitting

(D
1
2
ALL1D

1
2
AL)

−1Aa = M1 +M2 +M3

where M1 ≈ I, ∥M2∥ is small, and M3 has very low rank; see [1]. Usually, continuity of a is
assumed to yield the spectrum close to one at least in asymptotic perspective [4]; for example
a ∈ C2(Ω) is assumed in [5]. For some structured data, the resulting spectra can be described
exactly; see [5] for analysis of a 1D example with a(x) = ekx, k > 0. For nonsymmetric matrices,
the convergence of preconditioned GMRES for a preconditioned problem depends on the number
and sizes of the clusters of complex eigenvalues and on the norm of the matrix of eigenvectors [1].
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Lemma 3.2. Consider equation −(au′)′ = f on (0, 2π) with a(x) = 1 + m + sin(kx), m > 0,
k ∈ N, and periodic boundary conditions. Let the equation be considered in the weak form and
uniformly discretized by FEM with N piece-wise linear basis functions. Then for any k ∈ N,
m > 0 and δ > 0 there exists N ∈ N such that Λp,D ⊂ (1− δ, 1 + δ).

Lemma 3.3. Consider (1) with cc = 0 discretized by FEM with continuous piece-wise linear
functions. Let Ω1 ⊂ Ω. Let S be a set of such vertex numbers k that if Akj ̸= 0 then j is also in
S. Then if a(x1, x2)/p(x1, x2) = α in Ω1, then there are #S eigenvalues equal to α in Λp,D.

4 Numerical experiments

We consider equation (1) with Ω = (0, 2π)2 ⊂ R2 and smooth or step function a,

a(x) = 1.1− sin(x2) or a(x) = 1.1− sign(sin(x2)),

respectively, c = (1, 1), mildly oscillatory f . The weak form of the equation is discretized by
FEM with N = 2N1N2 elements and dt = 0.5. In the preconditioner, we use p = 1. We can
see in Table 2 that for the step data a, the Green preconditioning seems to be su�cient, while
for the smooth data, additional Jacobi preconditioning should be used. The spectra and their
bounds are displayed in Figures 1 and 2 for smooth and step function a, respectively. Matlab
code is available on https://github.com/LiyaGaynutdinova, section Time-Di�usion-Convection.
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Figure 1: Smooth a: Λp and Λp,D (blue dots) and bounds (red and green lines), N1=N2=24.
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smooth a step a
ct cc N1 = N2 - Lp Lp,D - Lp Lp,D
0 0 16 112 37 12 159 3 16

64 472 50 12 749 3 31
1 0 16 62 39 16 69 37 23

64 271 47 19 300 40 38
1 1 16 73 46 22 95 60 33

64 324 64 32 402 79 60

Table 2: Steps of preconditioned CG (for cc = 0) and GMRES without restarting (for cc = 1),
respectively, for no, LD and Lp,D preconditioning, respectively.
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Figure 2: Step function a: Λp and Λp,D (blue dots) and bounds (red and green lines), N1=N2=24.
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A thermodynamically consistent full hydro-mechanical coupling

T. Ligurský
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1 Introduction

Swelling clays can be very useful as sealing and bu�er materials, for instance in nuclear waste
engineering barriers. To simulate possible behaviour of the clays, one needs an appropriate
poromechanical model using convenient state variables and based on accessible measurement
data. Especially, deformation and water content have to be coupled two-directionally since
water a�ects deformation in the form of swelling and deformation a�ects water intake back.

Models combining movement of water in clays with their mechanical behaviour are often compiled
in a straightforward manner: a mechanical model developed for a variably saturated soil is put
together with a water retention curve introduced separately. Commonly, only an e�ect of the
suction in a mechanical model is considered, but the e�ect of a mechanical model on water
retention is disregarded in hydro�mechanical (HM) models. Even though the other direction of
the coupling is taken into account to some extent in some models, the consistency of coupled
HM models has often not been established rigorously on general thermodynamical principles,
which form one of the cornerstones of reliable mathematical modelling. The applicability of
such models is therefore limited, they may result in physically incorrect behaviour. On the
other hand, profound thermodynamic considerations lead to models with very general couplings
between state variables, which have not reached the level of applicability to practical problems
[1].

To summarise, no model appears completely satisfactory for swelling clays yet. To progress in
this direction, we shall focus on thermodynamically consistent full HM coupling as a basic part
of such models. A simple thermodynamical poroelastoplastic framework will be introduced, and
a consistent HM model with swelling developed according to it will be presented.

2 Thermodynamical framework for the unsaturated state

We consider non-stationary HM processes in a deformable swelling clay. The clay is viewed
as a porous medium which is composed of solid clay minerals and a porous space. The small-
strain framework is adopted and the sign convention with the stresses positive in tension and the
pressures positive in compression is used. The total stress in the porous material is described by
the Cauchy stress tensor σ, whereas deformation of the solid skeleton is described by the linear
strain tensor ε ≡ 1/2(∇u+(∇u)⊤) with u standing for the displacement vector of the skeleton.
The stress and strain tensors can be decomposed as:

σ = σd − pI, ε = εd +
1

3
εvI,

where p ≡ −1/3 trσ denotes the total pressure, εv ≡ tr ε is the volumetric strain (positive in
dilation), and σd, εd are the deviatoric stress and strain, respectively.

The �rst and second law of thermodynamics applied to an unsaturated deformable porous
medium lead to the following Clausius�Duhem inequality in the context of small isothermal
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transformations and negligible inertia forces and negligible e�ects of air [2, 3]:

D = Dsk +Dw ≥ 0 (1)

with:

Dsk = σd : ε̇d − pε̇v −mwġw − Φ̇, Dw = (−∇gw + f) ·ww. (2)

Here gw stands for the speci�c free enthalpy (also called the Gibbs potential) of water, mw

denotes the mass content of water per unit of initial volume, Φ the overall grand potential per
unit of initial porous volume, f the body force density, ww the mass �ow vector of water relative
to the skeleton, and a dot signi�es the time derivative.

The overall dissipation D is split into two distinct contributions here: the dissipation Dsk related
to the skeleton and the dissipation Dw due to relative motion of water with respect to the
skeleton. Regarding very distinct nature of the dissipations Dsk and Dw, we decouple unique
inequality (1) into two separate inequalities as in [2]:

Dsk ≥ 0, Dw ≥ 0. (3)

Following [4], we introduce the notion of suction s in a swelling clay as a measure of the water
free enthalpy:

s ≡ −ρ̂w(gw − gsw). (4)

Here ρ̂w stands for the density of liquid water at reference conditions, and gsw denotes the speci�c
free enthalpy of water in a clay sample that is in equilibrium with free moist air where the gas
pressure equals the atmospheric pressure and the relative humidity equals 1. Then one can
express the skeleton dissipation Dsk (2) as:

Dsk = σd : ε̇d − pε̇v +
mw

ρ̂w
ṡ− Φ̇.

Plastic deformations cause plastic changes of the porosity, to which plastic changes of the water
content can be related. Hence we shall consider the decomposition of the strains as well as of
the water content into the elastic (superscript e) and plastic parts (superscript p):

εd = εed + ε
p
d, εv = εev + εpv, mw = me

w +mp
w.

Assuming no hysteretic e�ects, we split the grand potential Φ into two main parts in accordance
with the additive character of energy-type quantities and the theory for the so-called 'decoupled
materials' [4, 5]: (i) the potential Φs corresponding to the energy stored in the solid matrix
during reversible mechanical processes, (ii) the potential Φw corresponding to water storage. To
incorporate swelling into the model, we let the potential Φs depend on the suction. We take the
following form of Φ precisely:

Φ = Φs(ε
e
d, ε

e
v, s) + Φw(s) + s

mp
w

ρ̂w
.

Consequently the dissipation condition Dsk ≥ 0 from (3) leads to the following elastic state
equations:

σd =
∂Φs

∂εed
, p = −∂Φs

∂εev
,

me
w

ρ̂w
=

dΦw

ds
+

∂Φs

∂s
, (5)
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and the following condition for the dissipation related to skeleton plastic evolutions [3]:

σd : ε̇pd − pε̇pv − s
ṁp

w

ρ̂w
≥ 0. (6)

Plastic evolutions in soils are caused by irreversible relative sliding of solid grains forming the
matrix, so the plastic volumetric strain is only due to plastic changes in the porous volume. This
can be written as ε̇pv = ϕ̇p, where ϕp denotes the Lagrangian plastic porosity [6]. Consequently
it seems quite natural to assume that it is possible to introduce a coe�cient χ ranging from 0 to
1 such that [6]:

ṁp
w

ρ̂w
= χϕ̇p = χε̇pv. (7)

Then by introducing the e�ective pressure p′ as:

p′ ≡ p+ χs,

one can rewrite inequality (6) into:

σd : ε̇pd − p′ε̇pv ≥ 0.

This results in the e�ective stress σ′ ≡ σd − p′I as a driving force of plastic strains and it leads
to description of the plastic behaviour in terms of this stress.

Besides, the non-negativeness of the dissipation Dw from (2) associated with water �ow through
the porous medium can be stated with the aid of (4) as:

Dw = (∇s+ ρ̂wf) ·
ww

ρ̂w
≥ 0. (8)

3 A consistent poroelastoplastic model with swelling

Our consistent HM model is based on the Modi�ed Cam-Clay one. We take the following stress�
strain relationship in the unsaturated state:

σd = σ0
d + 2Gεed, p = p0 + p̂ exp

(
−(1 + e0)ε

e∗
v (εev, s)

κ

)
− p̂,

where G denotes the shear modulus of the skeleton, σ0
d and p0 the initial stress state, p̂ a reference

pressure, κ is a positive sti�ness parameter and e0 is the initial void ratio. In addition, εe∗v is
de�ned by:

εe∗v (εev, s) := εev − εsw(ε
e
v, s)

with εsw standing for the swelling strain. To be able to treat even large swelling, we propose in
particular:

εsw(ε
e
v, s) := (1 + αs(s)ε

e
v)ε

c
sw(s), αs(s) := αs0

s0 − s

s0

for a suitable function εcsw and a parameter αs0 > 0 with s0 standing for the initial suction.

Concerning the plastic behaviour in the unsaturated case, we take the following yield function
f :

f(σd, p
′, p′co) =

3

2M2
σd : σd +

(
p′ − p′co

2

)2

−
(
p′co
2

)2

,
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where M denotes the slope of the critical state lines and p′co the e�ective consolidation pressure.
The plastic volume change εpv is considered as a hardening variable, and the size of the yield
surface depends also on the suction. We propose in particular:

p′co(ε
p
v, s) := p0co exp

(
−(1 + e0)(1− αs(s)ε

c
sw(s))ε

p
v

λ− κ

)
ζ(s) + χs,

where p0co stands for the initial consolidation pressure at saturation, ζ is a function describing
the dependence of the net consolidation pressure on the suction and λ is a sti�ness parameter
greater than κ.

Moreover, the associative �ow rule is assumed, for the sake of simplicity:

ε̇pd = Λ̇
∂f

∂σd
= Λ̇

3

M2
σd, ε̇pv = −Λ̇

∂f

∂p′
= Λ̇(p′co − 2p′).

The plastic multiplier Λ̇ satis�es the usual complementarity conditions:

Λ̇ ≥ 0, f ≤ 0, Λ̇f = 0, Λ̇ḟ = 0.

A consistent hydraulic model is obtained consequently according to relations (5) and (7). Besides,
dissipation condition (8) is satis�ed by a convenient form of Darcy's law, for instance. And
the overall poroelastoplastic constitutive model can be then extended continuously from the
unsaturated state to the saturated one [3].

A complete HM model is obtained �nally by inserting the resulting constitutive model and
Darcy's law into the water mass balance and the equilibrium equation.
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UFO 2024

Interactive system for universal functional optimization

L. Luk²an, C.Matonoha, J. Vl£ek

Institute of Computer Science, Czech Academy of Sciences, Prague

1 Introduction

The UFO system was developed for solving both dense medium-size and sparse large-scale op-
timization problems. This system can be used for formulation and solution of particular opti-
mization problems, for preparation of specialized optimization subroutines and for designing and
testing new optimization methods.

The UFO system uses a macroprocessor with a special input language for generating the UFO
control program. This means that arrays in the control program has (variable) dimensions
induced by the problem solved and the problem description can have an arbitrary structure.

The UFO system can be used for solving various dense or sparse optimization problems:

� Unconstrained or box constrained optimization.
� Optimization with general linear constraints.
� Optimization with general nonlinear constraints.
� Optimization with complementarity constraints.
� Nonsmooth optimization.
� Global optimization.
� Solution to systems of nonlinear functional equations.
� Solution to systems of ordinary di�erential equations.

The objective function can have various forms:

� General objective function.
� Linear or quadratic objective function.
� Sum of squares or powers.
� Minimax criterion and l1 or l∞ norm.
� Integral criterion containing solution to ordinary di�erential equations.

The problem can be dense, sparse and partially separable. The UFO system contains many
optimization methods that can be divided into the following classes:

� Heuristic methods for small-size problems.
� Conjugate gradient methods for large-scale problems.
� Variable metric methods that update an approximation of the Hessian matrix in every
iteration.
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� Modi�ed Newton methods that use second order derivatives obtained either analytically
or numerically or by automatic di�erentiation.

� Truncated Newton methods for large-scale problems based on di�erence approximations of
directional derivatives.

� Combined Gauss-Newton and variable metric methods for nonlinear least squares.
� Quasi-Newton methods for dense nonlinear least squares and nonlinear equations.
� Simplex or interior point methods for linear and quadratic programming.
� Bundle methods for nonsmooth optimization.
� Recursive quadratic programming and interior point or nonsmooth equation methods for
nonlinear programming.

� Primal interior point and smoothing methods for sparse generalized minimax problems.
� Various methods for global optimization.

These methods can be realized in various forms depending on the stepsize selection:

� Line search methods.
� General trust region methods.
� Cubic regularization methods.
� SQP �lter methods (for nonlinear programming problems).

Moreover, various preconditioned iterative methods can be chosen for direction determination.

The system UFO contains several features advantageous for the user:

� Automatic di�erentiation.
� Facilities for checking problem descriptions.
� Collections of problems for testing optimization methods.
� Graphical environment.
� Interface to the CUTE testing collection.
� Creation of the performance pro�les.

The use of the UFO system is demonstrated by the folloving transformer design [2]. We have to
minimize objective function

F (x) = max
1≤i≤11

fi(x),

fi(x) =

∣∣∣∣1− 2
v1(x, ti)

w1(x, ti) + v1(x, ti)

∣∣∣∣ ,
where v1(x, ti) and w1(x, ti) are complex numbers obtained recursively in such a way that
v4(x, ti) = 1, w4(x, ti) = 10 and

vk(x, ti) = cos(ϑix2k−1)vk+1(x, ti) + j sin(ϑix2k−1)
1

x2k
wk+1(x, ti),

wk(x, ti) = cos(ϑix2k−1)wk+1(x, ti) + j sin(ϑix2k−1)x2kvk+1(x, ti)

for k = 3, 2, 1. Here j =
√
−1 is the imaginary unit and ϑi = (π/2) yi, 1 ≤ i ≤ 11, where the

points yi, 1 ≤ i ≤ 11, are shown in the UFO input �le.
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$SET(INPUT)

$ADD(REAL,'\Y(11)')

X(1)=2.0D0; X(2)=1.5D0; X(3)=-2.0D0

X(4)=3.0D0; X(5)=0.8D0; X(6)= 6.0D0

Y(1)=0.5D0; Y(2)=0.6D0; Y(3)=0.7D0; Y(4)=0.77D0

Y(5)=0.9D0; Y(6)=1.0D0; Y(7)=1.1D0; Y(8)=1.23D0

Y(9)=1.3D0; Y(10)=1.4D0; Y(11)=1.5D0

$ENDSET

$SET(FMODELA)

$ADD(REAL,'\TH\CS\SN')

$ADD(COMPLEX,'\V(4)\W(4)\C1\C2\C3')

TH=0.5D0*Y(KA)*3.14159265358979324D0

V(4)=CMPLX(1.0D0,0.0D0); W(4)=1.0D1*V(4)

DO I=3,1,-1

CS=COS(TH*X(2*I-1)); SN=SIN(TH*X(2*I-1))

C1=CMPLX(CS,0.0D0); C2=CMPLX(0.0D0,(SN*X(2*I)))

C3=CMPLX(0.0D0,(SN/X(2*I)))

V(I)=C1*V(I+1)+C3*W(I+1); W(I)=C2*V(I+1)+C1*W(I+1)

END DO

FA=ABS(1.0D0-2.0D0*V(1)/(V(1)+W(1)))

$ENDSET

$NF=6; $NA=11; $NAL=0;

$MODEL='AM'

$CLASS='VM'; $MET=7

$GRAPH='E'; $ISO='Y'; $HIL='Y'; $PATH='Y'

$BATCH

$STANDARD

The results of the development are illustrated by using the following two pictures obtained by
the UFO graphical environment.
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The system UFO can also be used for testing and comparing various optimization methods.
The next �gures show performance pro�les [1] for interior point [3] and nonsmooth equation [4]
methods in the Newton (MN) and the variable metric (VM) realizations. These performance
pro�les were obtained using the UFO system.
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Accelerating parameter identi�cation in bread

baking simulations via model order reduction
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Institute of Thermomechanics, Czech Academy of Sciences, Prague

1 Introduction

Bread has been one of the principal nutriments for humans for thousands of years, with new
bread recipes being introduced to the market to this day. To simulate the process of bread
baking mathematically, one must take into account heat and mass transfer, evaporation and
condensation of water, and deformation of the dough, see, e. g., [1]. Furthermore, published
models rely on a large number of empirical parameters, some of which are only provided in the
literature as a wide range of values [2].

Estimating correct values of unknown model parameters conveys evaluating the model for a
large number of instances and comparing the results to experimental �ndings. The repeated
simulations prove to be computationally expensive; however, computational requirements can be
de�ated by employing model order reduction (MOR).

The long-term goal of our project is to create a credible model of bread baking and use it to
optimize the process from the point of view of energy costs while retaining all of the qualities
of the bread. The short-term aim presented in this work is to identify the correct parameters
of a preliminary model from the calculated evolution of the dough temperature. To speed up
this identi�cation, we utilize MOR; in particular, we combine proper orthogonal decomposition
(POD) with interpolation through arti�cial neural networks (ANN), as done by Hesthaven and
Ubbiali [3].

2 Methods

The preliminary model used focuses on internal heat and mass transfer inside the bread. Ex-
ternal transport is included through e�ective transport coe�cients. Furthermore, in the �rst
approximation, we consider baking rigid dough, that is, there is no domain deformation.

Full order model � mass transfer The dough is approached as a three-phase pseudohomo-
geneous system comprising solid wheat (s), liquid water (l) and gas (g). Furthermore, the gas
phase is composed of water vapor (v) and carbon dioxide (c). The mass transfer of liquid water
is realized by evaporation and subsequent condensation. The mass balance of the liquid is then

∂(αlρl)

∂t
= −ṁev, ṁev = kev (pv,∗ − pv) . (1)

Here and in all subsequent equations, αj is the volume fraction and ρj the density of phase
j = l, g. The rate of evaporation ṁev is driven by the di�erence between the saturated vapor
pressure pv,∗ and the local vapor pressure pv. We call the proportionality constant kev the
coe�cient of evaporation and set it as one of the two parameters, whose values are sought in the
next section.
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In the gas phase, the gas is additionally transported along the pressure gradient according to the
Darcy permeability law. Furthermore, carbon dioxide is produced via fermentation, ṁgen,

∂ (αgρg)

∂t
= ∇ ·

(
ρg

κg

µg
∇pg

)
+ ṁev + ṁgen

CO2
, (2)

where κg is the Darcy permeability constant, µg dynamic viscosity of the gas and pg its pressure.
Lastly, the mass balance of the water vapor is

∂ (αgρgωv)

∂t
= ∇ ·

(
ρgωv κ

g

µg
∇pg

)
+∇ ·

(
ρgDeff∇ωv

)
+ ṁev, (3)

where ωv is the mass fraction of water vapor in the gas and Deff the e�ective di�usion coe�cient
of the water vapor in CO2.

Full order model � heat transfer Enthalpy in the system is generated by evaporation and
transferred by conduction, with the governing equation being

∂
(∑

j ρ
jαjcjpT

)
∂t

= ∇ ·
(
λeff∇T

)
− ṁev∆Hev, λeff = αsλs + αlλl + αgλg, j = {s, l, g} , (4)

where T is temperature, λeff the e�ective thermal conductivity, calculated as weighted average
of thermal conductivities of all the phases, and Hev the evaporation enthalpy of water. The
thermal conductivity λs was chosen as the second desired parameter.

Model order reduction A widely used family of approaches for MOR involves a reduced
basis. The full order model (FOM) is evaluated for several parameter values, from which the
basis is extracted, e.g., by proper orthogonal decomposition (POD) [4]. The approximation of
the result for previously unseen parameter values is then sought as a superposition of the basis
functions. The expansion coe�cients can be determined by projection [5] or interpolation [3].

We employ a framework similar to Hesthaven and Ubbiali [3]. To obtain a suitable reduced basis,
we use POD, and to create a time- and parameter-continuous model, we utilize regression by
arti�cial neural networks (ANNs).

First, the temperature values are saved in a matrix of snapshots, Q ∈ Rm×NtNλsNkev , where each
column of the matrix corresponds to the temperature vector for one instance of time and the
pair of parameters. Furthermore, m is the spatial dimension, Nt the number of saved times, Nλs

the number of simulated parameters λs and Nkev the number of simulated parameters kev. We
will denote the total number of snapshots N = NtNλsNkev .

The reduced basis for this matrix is then created via POD, which corresponds to a truncated
singular value decomposition, as

Q ≈ Qℓ = ΨℓΣℓ(V ℓ)
T
= ΨℓHℓ, Ψℓ = [ψ1, . . . ,ψℓ], Hℓ = [η1, . . . ,ηℓ]

T, (5)

where Ψℓ ∈ Rm×ℓ is a matrix of the �rst ℓ left singular vectors ψr of Q, which are mutually
orthonormal and corresponds to spatial modes (toposes), Σℓ ∈ Rℓ×ℓ contains �rst ℓ singular values
and (V ℓ)T ∈ Rℓ×N the �rst ℓ right singular vectors, which are again mutually orthonormal. We
denote the matrix Σℓ(V ℓ)T as Hℓ and the vectors it contains as chronoses. The evolution of the
temperature �eld is then reconstructed as a superposition of toposes ψr, where the chronoses
act as their time- and parameter-dependent amplitudes.

A single chronos ηr ∈ RN contains information on the mode behavior in discrete temporal and
parametric values. We seek a continuous approximation of the chronoses with the help of curve
�tting by ANNs. In particular, the architecture utilized was a multi-layer perceptron with 2
hidden layers made of 40 neurons and activation function sigmoid.
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3 Results

The full order model was simulated by our in-house developed CFD solver built on the open source
�nite-volume C++ library OpenFOAM [6]. The loaf in question was rotationally symmetrical
and, to reduce the required computational power, only a 2D wedge was simulated. The domain
comprised 7920 �nite volume cells and 90 temporal values, 5 values of λs and 5 values of kev

were saved, leading to a 7920× 2250 matrix of snapshots.

For parameter identi�cation, we used experimental data from Zhang et al. [7], in particular the
evolution of temperatures on the surface and in the center of the bread. The error between the
model and the experiment is de�ned as

εexp =
1

Nt,exp

Nt,exp∑
t=1

(
T surf
exp (t)− T surf(t)

)2
maxt

(
T surf
exp (t)

) +

Nt,exp∑
t=1

(
T cent
exp (t)− T cent(t)

)2
maxt

(
T cent
exp (t)

)
 , (6)

where temperatures with the subscript exp are from experiment and temperatures without sub-
script are simulated. The superscript surf denotes the surface values and cent the values in the
center of the loaf.

The temperature values ranged from 299 to 420 K. To ensure that the POD modes were not
completely dominated by the �rst mode describing the mean temperature �elds, the matrix of
snapshots was �rst scaled, so that the temperature values lied in [0; 1] and the reduced-order
model (ROM) output was rescaled back during evaluation.

The ROM was created from the �rst 10 modes, which corresponded to the relative error in the
Frobenius norm ∥Q−Qℓ∥F /∥Q∥F = 5.85 · 10−7. The ROM was then used to minimize the
error εexp. The particular optimizer chosen was the Nelder-Mead algorithm, as implemented in
the scipy.optimize Python library. The dependence of εexp on the parameters and the found
optimum is depicted on Figure 1a.

The MOR framework includes neural networks that are initiated by random. To reduce the error
caused by this randomness, 10 identical ANNs with di�erent seeds used for the initial weight
distribution were trained and the �nal results of the ROM were taken as an average. A plot of
the mean value of the ROM output and 95 % con�dence bands can be found in Figure 2. The
optimum was taken as an average of the optima found by the individual ANNs and was located
at λs = 0.792, kev = 0.208, producing error εexp = 0.0743. The resulting temperature pro�les
can be seen in Figure 1b.

Figure 1: (a) Relative error εexp as a function of λs and kev. Prediction from one ANN. The red
star corresponds to the optimum. (b) Comparison between experimental results and simulation
for the optimal parameters.
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Figure 2: Slice through the ROM-computed error surfaces along λs = 0.8 (left) and kev = 0.225
(right), mean values and 95 % con�dence bands. These values were chosen as they are in the
middle of FOM sampling intervals, where the ANN inconsistencies are expected to be the highest.
Real FOM values for comparison are given by darker dots.

The whole procedure of 10 mini-optimizations and averaging the results took 29.18 s on a Lenovo
ThinkPad X1 Yoga 2nd with a 4-core CPU. On average, each mini-optimization comprised 62
function evaluations. Simulating the FOM for one pair of parameters required 24 minutes on
the same computer, meaning cca 3000 times speedup of the optimization. Furthermore, 25 FOM
simulations were needed for the construction of the ROM, meaning that the computational time
for the ROM construction is less than half of the estimated necessary time for direct optimization.

4 Conclusion

In this contribution, we have performed model order reduction of a model describing baking
of bread, and utilized the reduced-order model for identi�cation of unknown model parameters.
The framework consists of proper orthogonal decomposition and interpolation via arti�cial neural
networks (ANNs). We have used 10 randomly initiated ANNs and averaged the results to reduce
the ANN error. This framework o�ers cca 3000 times speedup in the online phase and more than
2 times speedup when taking both the ROM evaluation and construction into account.
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Lattice discrete particle model for 3D-printed alloy structures
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1 Introduction

In recent years, 3D printing technology of alloy structures has emerged and allowed the pro-
duction of speci�c customised products. In the �eld of implants, it allows the production of
patient-speci�c inserts, which can ensure better biocompatibility and also prevent so-called stress
shielding, which contributes signi�cantly to bone mass loss and creates excessive interface stresses
that eventually induce interface debonding and implant loosening. A strong bond with the bone
can be achieved by the combination of a porous exterior with a rigid implant core, particu-
larly when customising implants for individual patients [1]. Moreover, it permits the required
surface treatment, which is essential to the implant's successful osseointegration. This paper
focuses on recent developments in a numerical model based on the lattice discrete particle model
(LDPM) [2] to adequately capture the behaviour of 3D-printed alloy structures. LDPM can cre-
ate and simulate the relevant material at the particle scale, considering the material's underlying
mesostructure, including inevitable pores.

2 Lattice discrete particle model

LDPM has proven its applicability for modelling of various materials, i.e., rocks [3] and con-
crete [2], as well as many engineering problems such as adhesive anchors, prestressed concrete
beams, and �bre-reinforced polymer-concrete joints. The material is discretised as a collection
of rigid entities, or cells, interacting across the de�ned facets that separate them. These facets,
which are presumed to be between the neighbouring cells, may serve as surfaces for cracks [2].
In contrast to the �rst LDPM formulation, the current paper requires the 3D-printed metals'
particle size distribution to be speci�ed. Figure 1 displays the integrated defects and numerical
model.

The model de�nition is based on stress and strain vectors de�ned on the facets. The rigid body
kinetics is employed to describe the displacement vector associated with the facets [2]. However,
the original formulation is not able to recover the full Poisson ratio range (−1 < ν < 0.5) and
is limited to ν < 0.25. Therefore, the volumetric-deviatoric split introduced in the Microplane
models [4] is considered. The volumetric-deviatoric split allows the recovery of the full Poisson
ratio range needed for alloys and other materials. Because of the underlying tetrahedral mesh
and corresponding facets Ωe (see [2]) the volumetric (hydrostatic) strain is calculated as [5]

εV k =
1

3Ωe,0

∑
m∈Fe

ΓmlijεNm, (1)

where Ωe,0 is the initial volume of the tetrahedral element, Fe is the set of facets belonging to
one element, and Γm and lij are the facet area and distance of the adjacent nodes corresponding
to the facet, respectively. εNm stands for the normal strain component on the facet m. The
normal deviatoric strain for facet k is written as

εNDk = εNk − εV k. (2)
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(a) (b)

Figure 1: Dog bone specimen: (a) full model with particle distribution; (b) part of the model
with pores/voids.

Moreover, the shear (tangential) strain in the plane of the facet is written as εTk = (ε2Mk+ε2Lk)
1/2,

where εMk and εLk are the shear components in the local coordinate system. The deviatoric
strain is de�ned as εDk = (ε2NDk + ε2Tk)

1/2. The corresponding stress components then read

σV = EV εN , σND = EDεND, σM = EDεM , σL = EDεL, (3)

where EV = E/ (1− ν) and ED = E/(1 + ν) are the volumetric and deviatoric moduli, respec-
tively, related to Young's modulus E. The constitutive material law de�ned on the facets is
described in the following section. By imposing the equilibrium through the principle of virtual
work, the internal work and nodal forces associated with the facet can be calculated [2]. Note
that subscript k is omitted in the following text for readability.

3 LDPM for elastoplasticity

This section introduces a lattice discrete particle model for plasticity. The model is based on
the volumetric-deviatoric split, and the approaches outlined in [6]. This equivalent stress-based
material model is implemented in MARS software1 and is also combined with isotropic damage.
The model is de�ned by means of equivalent stress, σeq, and strain, εeq. The equivalent strain
has the form

εeq =
√
(εV + αεND)

2 + α
(
ε2M + ε2L

)
=

√(
εeqN

)2
+ αε2T , (4)

where εeqN = εV + αεND, α stands for the interaction coe�cient. This de�nition of equivalent
normal strain originates from the assumption that σN = EV ε

eq
N . Based on the principle of virtual

power, we relate the stress components to the equivalent stress as

σN = σeq ε
eq
N

εeq
, σM = σeqαεM

εeq
, σL = σeqαεL

εeq
, (5)

and
σV = σeq εV

εeq
, σND = σeqαεND

εeq
. (6)

1https://www.es3inc.com/mars-solver/
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E [GPa] ν [-] σY 0 [MPa] H [GPa] κ0 [-] lf [mm]
120 0.3 750 4.4 0.001 0.2

Table 1: Material properties used in current study for titanium alloy

By substituting Equations (5) and (6) into Equation (4), the e�ective stress is obtained in terms
of normal and shear stresses

σeq =

√
σ2
N +

σ2
T

α
, σT =

√
σ2
M + σ2

L. (7)

If the elastic behaviour is assumed and taking into account Equations (5) and (6), the stresses
are written as

σV = EeqεV , σND = αEeqεND, σM = αEeqεM , σL = αEeqεL, (8)

where Eeq = σeq/εeq = EV and thus α = ED/EV = 1− 2ν/1 + ν. This formulation covers the
whole physical range of the Poisson ratio.

In this model, the yield condition is written as

f (σ) = (σeq)2 − [σY (κ)]2 = 0, (9)

where κ is the hardening variable, which is related to the plastic multiplier λ through the relation
κ̇ = λ̇ and yield strength

σY (κ) = σY 0 +Hκ, (10)

where σY 0 is the initial yield stress and H is the hardening modulus. When this condition is
satis�ed, yielding occurs. The radial return is performed on the equivalent stress if f (σ) > 0.

If the elastoplastic model is combined with the isotropic damage, the �nal stresses are evaluated
as

σN = (1− ω)σN , σM = (1− ω)σM , σL = (1− ω)σL, (11)

where ω is the damage parameter. The linear softening law is assumed and de�ned in the form

ω =
κ− κ0
κf − κ0

, (12)

where κf = lf/lij , lf is fracture opening, and κ0 stands for the damage threshold (onset of
damage).

4 Preliminary results

This section summarizes the preliminary �ndings of the above-described numerical model based
on the equivalent stress and volume of pores equal to 15% assumed. The material model pa-
rameters used to simulate the uniaxial loading of dogbone specimens are summarised in Table 1.
The results obtained for the model with and without damage are presented in Figure 2(a). As
can be seen from the presented results, the inserted pores reduced the yield strength of the spec-
imen compared to the raw material. Moreover, the material model with damage is capable of
capturing the specimen's failure and crack evolution, see Figure 2(b).
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Figure 2: Uniaxial tension of dog bone specimen: (a) load-displacement diagram - model without
damage (solid line); model with damage (dashed line); (b) overall view of the sample.

5 Conclusion

The paper introduces a novel lattice discrete particle model for 3D-printed titanium alloys.
By removing cells from the computational model, the intrinsic porosity caused by the printing
procedure is taken into account. It's important to note that the imperfections caused by the
printing procedure signi�cantly in�uence the specimen performance, particularly for smaller
thicknesses near the printing limits. This research is signi�cant as it presents a numerical model
for a deeper understanding of the factors that a�ect the performance of 3D-printed titanium
alloys.
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